Suppr超能文献

使用自监督学习自动检测脑出血患者的黑洞征

Automated Detection of Black Hole Sign for Intracerebral Hemorrhage Patients Using Self-Supervised Learning.

作者信息

Wang Hanyin, Schwirtlich Tim, Houskamp Ethan J, Hutch Meghan R, Murphy Julianne X, do Nascimento Juliana S, Zini Andrea, Brancaleoni Laura, Giacomozzi Sebastiano, Luo Yuan, Naidech Andrew M

机构信息

From the Department of Preventive Medicine (H.W., T.S., M.R.H, J.X.M, J.S.N, Y.L.), Department of Neurological Surgery (E.J.H.), and Department of Neurology (A.M.N.), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; IRCCS Istituto delle Scienze Neurologiche di Bologna, Department of Neurology and Stroke Center (A.Z., L.B.), Maggiore Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM) (S.G.), Alma Mater Studiorum-University of Bologna, Bologna, Italy.

出版信息

AJNR Am J Neuroradiol. 2025 May 7. doi: 10.3174/ajnr.A8826.

Abstract

BACKGROUND AND PURPOSE

Intracerebral Hemorrhage (ICH) is a devastating form of stroke. Hematoma expansion (HE), growth of the hematoma on interval scans, predicts death and disability. Accurate prediction of HE is crucial for targeted interventions to improve patient outcomes. The black hole sign (BHS) on non-contrast computed tomography (CT) scans is a predictive marker for HE. An automated method to recognize the BHS and predict HE could speed precise patient selection for treatment.

MATERIALS AND METHODS

In. this paper, we presented a novel framework leveraging self-supervised learning (SSL) techniques for BHS identification on head CT images. A ResNet-50 encoder model was pre-trained on over 1.7 million unlabeled head CT images. Layers for binary classification were added on top of the pre-trained model. The resulting model was fine-tuned using the training data and evaluated on the held-out test set to collect AUC and F1 scores. The evaluations were performed on scan and slice levels. We ran different panels, one using two multi-center datasets for external validation and one including parts of them in the pre-training RESULTS: Our model demonstrated strong performance in identifying BHS when compared with the baseline model. Specifically, the model achieved scan-level AUC scores between 0.75-0.89 and F1 scores between 0.60-0.70. Furthermore, it exhibited robustness and generalizability across an external dataset, achieving a scan-level AUC score of up to 0.85 and an F1 score of up to 0.60, while it performed less well on another dataset with more heterogeneous samples. The negative effects could be mitigated after including parts of the external datasets in the fine-tuning process.

CONCLUSIONS

This study introduced a novel framework integrating SSL into medical image classification, particularly on BHS identification from head CT scans. The resulting pre-trained head CT encoder model showed potential to minimize manual annotation, which would significantly reduce labor, time, and costs. After fine-tuning, the framework demonstrated promising performance for a specific downstream task, identifying the BHS to predict HE, upon comprehensive evaluation on diverse datasets. This approach holds promise for enhancing medical image analysis, particularly in scenarios with limited data availability.

ABBREVIATIONS

ICH = Intracerebral Hemorrhage; HE = Hematoma Expansion; BHS = Black Hole Sign; CT = Computed Tomography; SSL = Self-supervised Learning; AUC = Area Under the receiver operator Curve; CNN = Convolutional Neural Network; SimCLR = Simple framework for Contrastive Learning of visual Representation; HU = Hounsfield Unit; CLAIM = Checklist for Artificial Intelligence in Medical Imaging; VNA = Vendor Neutral Archive; DICOM = Digital Imaging and Communications in Medicine; NIfTI = Neuroimaging Informatics Technology Initiative; INR = International Normalized Ratio; GPU= Graphics Processing Unit; NIH= National Institutes of Health.

摘要

背景与目的

脑出血(ICH)是一种严重的中风形式。血肿扩大(HE),即间隔扫描时血肿的增大,可预测死亡和残疾情况。准确预测HE对于采取针对性干预措施以改善患者预后至关重要。非增强计算机断层扫描(CT)上的黑洞征(BHS)是HE的预测标志物。一种识别BHS并预测HE的自动化方法可加快精确的患者治疗选择。

材料与方法

在本文中,我们提出了一个利用自监督学习(SSL)技术在头部CT图像上识别BHS的新框架。一个ResNet - 50编码器模型在超过170万张未标记的头部CT图像上进行了预训练。在预训练模型之上添加了用于二元分类的层。使用训练数据对所得模型进行微调,并在留出的测试集上进行评估以收集AUC和F1分数。评估在扫描和切片层面进行。我们运行了不同的数据集组合,一个使用两个多中心数据集进行外部验证,另一个在预训练中包含其中部分数据。结果:与基线模型相比,我们的模型在识别BHS方面表现出色。具体而言,该模型在扫描层面的AUC分数在0.75 - 0.89之间,F1分数在0.60 - 0.70之间。此外,它在外部数据集上表现出稳健性和通用性,扫描层面的AUC分数高达0.85,F1分数高达0.60,而在另一个样本更具异质性的数据集上表现稍差。在微调过程中纳入部分外部数据集后,负面影响可得到缓解。

结论

本研究引入了一个将SSL集成到医学图像分类中的新框架,特别是用于从头部CT扫描中识别BHS。所得的预训练头部CT编码器模型显示出将手动标注减至最少的潜力,这将显著减少人力、时间和成本。经过微调后,该框架在对不同数据集进行全面评估时,对于识别BHS以预测HE这一特定下游任务表现出了良好的性能。这种方法有望增强医学图像分析,特别是在数据可用性有限的情况下。

缩略词

ICH = 脑出血;HE = 血肿扩大;BHS = 黑洞征;CT = 计算机断层扫描;SSL = 自监督学习;AUC = ROC曲线下面积;CNN = 卷积神经网络;SimCLR = 视觉表征对比学习的简单框架;HU = 亨氏单位;CLAIM = 医学成像人工智能清单;VNA = 供应商中立存档;DICOM = 医学数字成像和通信;NIfTI = 神经成像信息技术倡议;INR = 国际标准化比值;GPU = 图形处理单元;NIH = 美国国立卫生研究院

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验