Suppr超能文献

不确定性下自杀未遂风险分析及影响因素的调查算法

Algorithm for investigating risk analysis and factors affecting suicidal attempts under uncertainty.

作者信息

Liang RuiHua, Duan Ni, Liu XueJing, Liu Chuanqin

机构信息

Department of Psychiatry, Qingdao Mental Health Center, Qingdao, 266000, Shandong, China.

出版信息

Sci Rep. 2025 May 7;15(1):15933. doi: 10.1038/s41598-025-97910-7.

Abstract

Many people die from suicide, and it is a significant challenge in most societies, which calls for improved assessment procedures. This work presents a risk assessment model and outlines the risk factors for suicidal attempts under conditions of risk uncertainty. This algorithm assesses risk factors entirely using an interval-valued q-rung orthopair fuzzy (ivq-ROF) set information based Sugeno-Weber aggregation operators and EDAS method. Second, it applies Positive Distance from the Average (PDA) and Negative Distance from the Average (NDA) to balance an assessment, normalize various criteria, and rank them into higher order. We proposed ivq-ROF Sugeno-Weber weighted averaging (ivq-ROFSWWA), ivq-ROFS weighted geometric (ivq-ROFSWG) operators and EDAS method for improving the process of aggregation of fuzzy information. In the final type of stage, add up the PDA and NDA scores to determine the critical risk factors. This approach also increases the accuracy of predicting suicide risk, which is a vital asset for mental health researchers and practitioners to build effective intervention and prevention initiatives. Also, the nature of the algorithm renders decisions on compound data interfaces beneficial to numerous public health situations. Its application may include understanding factors that should inform policies that touch on mental health services and enhance the utilization of scarce resources in meeting the growing demand for such services. In conclusion, this study aspires to avoid future suicides due to a solid analytical framework for the research problem.

摘要

许多人死于自杀,这在大多数社会中都是一项重大挑战,需要改进评估程序。这项工作提出了一种风险评估模型,并概述了风险不确定条件下自杀未遂的风险因素。该算法完全基于区间值q阶正交对模糊(ivq-ROF)集信息,使用Sugeno-Weber聚合算子和EDAS方法来评估风险因素。其次,它应用离均值正距离(PDA)和离均值负距离(NDA)来平衡评估、标准化各种标准并将它们排序为更高阶。我们提出了ivq-ROF Sugeno-Weber加权平均(ivq-ROFSWWA)、ivq-ROFS加权几何(ivq-ROFSWG)算子和EDAS方法来改进模糊信息的聚合过程。在最后一个阶段,将PDA和NDA分数相加,以确定关键风险因素。这种方法还提高了自杀风险预测的准确性,这对于心理健康研究人员和从业者制定有效的干预和预防措施至关重要。此外,该算法的性质使复合数据接口的决策有利于众多公共卫生情况。其应用可能包括了解那些应为涉及心理健康服务的政策提供依据的因素,并提高稀缺资源在满足对此类服务不断增长的需求方面的利用率。总之,本研究旨在通过为研究问题建立一个坚实的分析框架来避免未来的自杀行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20bf/12059005/cc025534bce5/41598_2025_97910_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验