Sarhan Khalid, Azzam Ahmed Y, Moawad Mostafa Hossam El Din, Serag Ibrahim, Abbas Abdallah, Sarhan Ahmed E
Faculty of Medicine, Mansoura University, Mansoura, Egypt.
Faculty of Medicine, October 6 University, Giza, Egypt.
Transl Stroke Res. 2025 May 8. doi: 10.1007/s12975-025-01354-0.
The implementation of artificial intelligence (AI), particularly Viz.ai software in stroke care, has emerged as a promising tool to enhance the detection of large vessel occlusion (LVO) and to improve stroke workflow metrics and patient outcomes. The aim of this systematic review and meta-analysis is to evaluate the impact of Viz.ai on stroke workflow efficiency in hospitals and on patients' outcomes. Following the PRISMA guidelines, we conducted a comprehensive search on electronic databases, including PubMed, Web of Science, and Scopus databases, to obtain relevant studies until 25 October 2024. Our primary outcomes were door-to-groin puncture (DTG) time, CT scan-to-start of endovascular treatment (EVT) time, CT scan-to-recanalization time, and door-in-door-out time. Secondary outcomes included symptomatic intracranial hemorrhage (ICH), any ICH, mortality, mRS score < 2 at 90 days, and length of hospital stay. A total of 12 studies involving 15,595 patients were included in our analysis. The pooled analysis demonstrated that the implementation of the Viz.ai algorithm was associated with lesser CT scan to EVT time (SMD -0.71, 95% CI [-0.98, -0.44], p < 0.001) and DTG time (SMD -0.50, 95% CI [-0.66, -0.35], p < 0.001) as well as CT to recanalization time (SMD -0.55, 95% CI [-0.76, -0.33], p < 0.001). Additionally, patients in the post-AI group had significantly lower door-in door-out time than the pre-AI group (SMD -0.49, 95% CI [-0.71, -0.28], p < 0.001). Despite the workflow metrics improvement, our analysis did not reveal statistically significant differences in patient clinical outcomes (p > 0.05). Our results suggest that the integration of the Viz.ai platform in stroke care holds significant potential for reducing EVT delays in patients with LVO and optimizing stroke flow metrics in comprehensive stroke centers. Further studies are required to validate its efficacy in improving clinical outcomes in patients with LVO.
人工智能(AI)的应用,尤其是Viz.ai软件在中风治疗中的应用,已成为一种有前景的工具,可增强对大血管闭塞(LVO)的检测,并改善中风工作流程指标和患者预后。本系统评价和荟萃分析的目的是评估Viz.ai对医院中风工作流程效率和患者预后的影响。按照PRISMA指南,我们对包括PubMed、科学网和Scopus数据库在内的电子数据库进行了全面检索,以获取截至2024年10月25日的相关研究。我们的主要结局指标是门到股动脉穿刺(DTG)时间、CT扫描到血管内治疗(EVT)开始时间、CT扫描到再通时间以及门进-门出时间。次要结局指标包括症状性颅内出血(ICH)、任何颅内出血、死亡率、90天时改良Rankin量表(mRS)评分<2以及住院时间。我们的分析共纳入了12项研究,涉及15595例患者。汇总分析表明,Viz.ai算法的应用与CT扫描到EVT时间缩短(标准化均数差[SMD] -0.71,95%置信区间[-0.98,-0.44],p<0.001)、DTG时间缩短(SMD -0.50,95%置信区间[-0.66,-0.35],p<0.001)以及CT到再通时间缩短(SMD -0.55,95%置信区间[-0.76,-0.33],p<0.001)相关。此外,人工智能应用后组患者的门进-门出时间显著低于人工智能应用前组(SMD -0.49,95%置信区间[-0.71,-0.28],p<0.001)。尽管工作流程指标有所改善,但我们的分析未发现患者临床结局存在统计学显著差异(p>0.05)。我们的结果表明,在中风治疗中整合Viz.ai平台在减少LVO患者的EVT延迟和优化综合中风中心的中风流程指标方面具有巨大潜力。需要进一步研究来验证其对改善LVO患者临床结局的疗效。