Suppr超能文献

基于人工智能的分诊在转院大血管闭塞性卒中患者中的真实世界经验。

Real-World Experience with Artificial Intelligence-Based Triage in Transferred Large Vessel Occlusion Stroke Patients.

机构信息

Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, New York, USA.

Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, New York, USA.

出版信息

Cerebrovasc Dis. 2021;50(4):450-455. doi: 10.1159/000515320. Epub 2021 Apr 13.

Abstract

BACKGROUND AND PURPOSE

Randomized controlled trials have demonstrated the importance of time to endovascular therapy (EVT) in clinical outcomes in large vessel occlusion (LVO) acute ischemic stroke. Delays to treatment are particularly prevalent when patients require a transfer from hospitals without EVT capability onsite. A computer-aided triage system, Viz LVO, has the potential to streamline workflows. This platform includes an image viewer, a communication system, and an artificial intelligence (AI) algorithm that automatically identifies suspected LVO strokes on CTA imaging and rapidly triggers alerts. We hypothesize that the Viz application will decrease time-to-treatment, leading to improved clinical outcomes.

METHODS

A retrospective analysis of a prospectively maintained database was assessed for patients who presented to a stroke center currently utilizing Viz LVO and underwent EVT following transfer for LVO stroke between July 2018 and March 2020. Time intervals and clinical outcomes were compared for 55 patients divided into pre- and post-Viz cohorts.

RESULTS

The median initial door-to-neuroendovascular team (NT) notification time interval was significantly faster (25.0 min [IQR = 12.0] vs. 40.0 min [IQR = 61.0]; p = 0.01) with less variation (p < 0.05) following Viz LVO implementation. The median initial door-to-skin puncture time interval was 25 min shorter in the post-Viz cohort, although this was not statistically significant (p = 0.15).

CONCLUSIONS

Preliminary results have shown that Viz LVO implementation is associated with earlier, more consistent NT notification times. This application can serve as an early warning system and a failsafe to ensure that no LVO is left behind.

摘要

背景与目的

随机对照试验已经证明了血管内治疗(EVT)时间对大血管闭塞(LVO)急性缺血性脑卒中临床结局的重要性。当患者需要从没有现场 EVT 能力的医院转来时,治疗的延迟尤其普遍。计算机辅助分诊系统 Viz LVO 具有简化工作流程的潜力。该平台包括图像查看器、通信系统和人工智能(AI)算法,可自动识别 CTA 成像上疑似 LVO 中风,并迅速发出警报。我们假设 Viz 应用程序将缩短治疗时间,从而改善临床结局。

方法

对 2018 年 7 月至 2020 年 3 月期间因 LVO 中风而转移至目前使用 Viz LVO 的卒中中心并接受 EVT 的患者进行了前瞻性维护数据库的回顾性分析。比较了 55 例患者的时间间隔和临床结局,这些患者分为 Viz 应用程序实施前后的两个队列。

结果

中位初始门到神经介入团队(NT)通知时间间隔明显更快(25.0 分钟[IQR=12.0]比 40.0 分钟[IQR=61.0];p=0.01),差异更小(p<0.05)。Viz LVO 实施后,初始门到皮肤穿刺时间间隔中位数缩短了 25 分钟,但这在统计学上并不显著(p=0.15)。

结论

初步结果表明,Viz LVO 的实施与更早、更一致的 NT 通知时间有关。该应用程序可以作为一个预警系统和一个安全保障,以确保不会遗漏任何 LVO。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验