Zaborowska-Mazurkiewicz Michalina, Nazaruk Ewa, Bilewicz Renata
University of Warsaw, Faculty of Chemistry, Pasteura 1, 02093, Warsaw, Poland.
J Nanobiotechnology. 2025 May 7;23(1):334. doi: 10.1186/s12951-025-03370-6.
Biological molecules such as integral membrane proteins, peptides, and nucleic acids that are not soluble or sufficiently stable in aqueous solutions can be stabilized through encapsulation in lipid nanoparticles. Discovering the potential of lipid liquid-crystalline nanoparticles opens up exciting possibilities for housing sensitive membrane proteins. Lipid mesophases provide an environment that protects the cargo, usually a drug, from rapid clearance or degradation. This study employed the mentioned platform to stabilize a different cargo-an essential transmembrane enzyme, HMG-CoA reductase (HMGR). The nanostructured lipid liquid-crystalline (LLC) nanoparticles known as hexosomes are selected as a convenient nanocontainer for the redox-active protein for real-time monitoring of its functions in the bulk of the solution and point to the applicability of the proposed platform in the evaluation of therapeutic functions of the protein by standard physicochemical methods. Instead of using detergents, which usually affect the functions and stability of sensitive membrane proteins, we provide a suitable environment, protecting them in the bulk of the solution against other present species, e.g., toxic compounds or degrading proteins. The objective was to optimize the composition and structure of the lipid nanoparticles to meet the needs of such sensitive and flexible membrane proteins as HMGR and compare the functioning of the encapsulated enzyme with that of the same protein free in the aqueous solution. The catalytic reaction of HMGR involves the 4-electron reduction of HMG-CoA to mevalonate and CoA while simultaneously oxidizing NADPH to NADP. Subsequently, mevalonate is transformed into cholesterol. The hexosomes we selected as lipid nano-containers were composed of monoolein, 1-oleoyl-rac-glycerol (GMO), Pluronic F127, and poly(ethylene glycol) (PEG). These specific structural characteristics of the lipid nanoparticles were found optimal for enhancing the stability of HMGR. We characterized these hexosomes using dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and cryogenic electron microscopy (Cryo-TEM) methods, both with and without the encapsulated protein. In our innovative approach, the enzyme activity was assessed by monitoring changes in NADPH concentration outside the nanocarrier. We tracked fluctuations in NADPH levels during the catalytic reaction using two independent methods: UV-Vis spectrophotometry and cyclic voltammetry. Significantly, we could demonstrate the inhibition of the nano-encapsulated enzyme by fluvastatin, an enzyme inhibitor and cholesterol-lowering drug. This paves the way for the discovery of new enzymatic inhibitors and activators as therapeutic agents controlling the activity of membrane proteins, thereby inspiring future cholesterol-lowering therapies in our case and, in general, further research and potential new treatments.
诸如整合膜蛋白、肽和核酸等在水溶液中不溶或稳定性不足的生物分子,可以通过包裹在脂质纳米颗粒中实现稳定。发现脂质液晶纳米颗粒的潜力为容纳敏感的膜蛋白开辟了令人兴奋的可能性。脂质中间相提供了一个环境,可保护所载物(通常是一种药物)不被快速清除或降解。本研究采用上述平台来稳定一种不同的所载物——一种必需的跨膜酶,即3-羟基-3-甲基戊二酰辅酶A还原酶(HMGR)。被称为六棱柱体的纳米结构脂质液晶(LLC)纳米颗粒被选作氧化还原活性蛋白的便捷纳米容器,用于实时监测其在溶液主体中的功能,并表明所提出的平台在通过标准物理化学方法评估该蛋白的治疗功能方面的适用性。我们没有使用通常会影响敏感膜蛋白功能和稳定性的去污剂,而是提供了一个合适的环境,在溶液主体中保护它们免受其他存在的物质(如有毒化合物或降解蛋白)的影响。目标是优化脂质纳米颗粒的组成和结构,以满足像HMGR这样敏感且灵活的膜蛋白的需求,并将包裹的酶的功能与在水溶液中游离的相同蛋白的功能进行比较。HMGR的催化反应涉及将HMG-CoA 4电子还原为甲羟戊酸和辅酶A,同时将NADPH氧化为NADP。随后,甲羟戊酸转化为胆固醇。我们选作脂质纳米容器的六棱柱体由单油酸甘油酯、1-油酰基-消旋甘油(GMO)、普朗尼克F127和聚乙二醇(PEG)组成。发现脂质纳米颗粒的这些特定结构特征对于增强HMGR的稳定性是最佳的。我们使用动态光散射(DLS)、小角X射线散射(SAXS)和低温电子显微镜(Cryo-TEM)方法对这些六棱柱体进行了表征,包括有无包裹蛋白的情况。在我们的创新方法中,通过监测纳米载体外部NADPH浓度的变化来评估酶活性。我们使用两种独立的方法跟踪催化反应过程中NADPH水平的波动:紫外-可见分光光度法和循环伏安法。值得注意的是,我们能够证明氟伐他汀(一种酶抑制剂和降胆固醇药物)对纳米包裹酶的抑制作用。这为发现新的酶抑制剂和激活剂作为控制膜蛋白活性的治疗剂铺平了道路,从而在我们的案例中激发未来的降胆固醇疗法,总体而言,也为进一步的研究和潜在的新治疗方法提供了思路。
Biochim Biophys Acta. 2000-12-15
J Colloid Interface Sci. 2025-1-15
Chem Rec. 2024-2
Colloids Surf B Biointerfaces. 2022-9
ACS Appl Mater Interfaces. 2022-5-11
Materials (Basel). 2020-10-29