Suppr超能文献

自组装多腔室液晶脂载体用于蛋白质、肽和核酸药物传递。

Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery.

机构信息

CNRS UMR Physico-chimie-Pharmacotechnie-Biopharmacie, Univ Paris Sud, Châtenay-Malabry, France.

出版信息

Acc Chem Res. 2011 Feb 15;44(2):147-56. doi: 10.1021/ar100120v. Epub 2010 Dec 29.

Abstract

Lipids and lipopolymers self-assembled into biocompatible nano- and mesostructured functional materials offer many potential applications in medicine and diagnostics. In this Account, we demonstrate how high-resolution structural investigations of bicontinuous cubic templates made from lyotropic thermosensitive liquid-crystalline (LC) materials have initiated the development of innovative lipidopolymeric self-assembled nanocarriers. Such structures have tunable nanochannel sizes, morphologies, and hierarchical inner organizations and provide potential vehicles for the predictable loading and release of therapeutic proteins, peptides, or nucleic acids. This Account shows that structural studies of swelling of bicontinuous cubic lipid/water phases are essential for overcoming the nanoscale constraints for encapsulation of large therapeutic molecules in multicompartment lipid carriers. For the systems described here, we have employed time-resolved small-angle X-ray scattering (SAXS) and high-resolution freeze-fracture electronic microscopy (FF-EM) to study the morphology and the dynamic topological transitions of these nanostructured multicomponent amphiphilic assemblies. Quasi-elastic light scattering and circular dichroism spectroscopy can provide additional information at the nanoscale about the behavior of lipid/protein self-assemblies under conditions that approximate physiological hydration. We wanted to generalize these findings to control the stability and the hydration of the water nanochannels in liquid-crystalline lipid nanovehicles and confine therapeutic biomolecules within these structures. Therefore we analyzed the influence of amphiphilic and soluble additives (e.g. poly(ethylene glycol)monooleate (MO-PEG), octyl glucoside (OG), proteins) on the nanochannels' size in a diamond (D)-type bicontinuous cubic phase of the lipid glycerol monooleate (MO). At body temperature, we can stabilize long-living swollen states, corresponding to a diamond cubic phase with large water channels. Time-resolved X-ray diffraction (XRD) scans allowed us to detect metastable intermediate and coexisting structures and monitor the temperature-induced phase sequences of mixed systems containing glycerol monooleate, a soluble protein macromolecule, and an interfacial curvature modulating agent. These observed states correspond to the stages of the growth of the nanofluidic channel network. With the application of a thermal stimulus, the system becomes progressively more ordered into a double-diamond cubic lattice formed by a bicontinuous lipid membrane. High-resolution freeze-fracture electronic microscopy indicates that nanodomains are induced by the inclusion of proteins into nanopockets of the supramolecular cubosomic assemblies. These results contribute to the understanding of the structure and dynamics of functionalized self-assembled lipid nanosystems during stimuli-triggered LC phase transformations.

摘要

脂质和脂多聚物自组装成具有生物相容性的纳米和介观结构功能材料,在医学和诊断领域有许多潜在的应用。在本综述中,我们展示了从溶致热敏感液晶(LC)材料形成的双连续立方模板的高分辨率结构研究如何引发创新的脂多聚物自组装纳米载体的发展。这些结构具有可调节的纳米通道尺寸、形态和分级内部组织,并为可预测地装载和释放治疗性蛋白质、肽或核酸提供了潜在的载体。本综述表明,对溶致双连续立方脂质/水相膨胀的结构研究对于克服封装大治疗分子的纳米限制在多隔脂质载体中是至关重要的。对于这里描述的系统,我们采用了时间分辨小角 X 射线散射(SAXS)和高分辨率冷冻断裂电子显微镜(FF-EM)来研究这些纳米结构多组分两亲组装体的形态和动态拓扑转变。准弹性光散射和圆二色性光谱可以在接近生理水合条件下提供有关脂质/蛋白质自组装行为的纳米尺度信息。我们希望将这些发现推广到控制液晶脂质纳米载体中水纳米通道的稳定性和水合作用,并将治疗性生物分子限制在这些结构内。因此,我们分析了两亲性和可溶性添加剂(例如,单油酸甘油酯聚乙二醇单酯(MO-PEG)、辛基葡萄糖苷(OG)、蛋白质)对脂质单油酸甘油酯(MO)的钻石(D)型双连续立方相纳米通道尺寸的影响。在体温下,我们可以稳定长寿命的膨胀状态,对应于具有大水通道的钻石立方相。时间分辨 X 射线衍射(XRD)扫描使我们能够检测亚稳中间相和共存结构,并监测含有单油酸甘油酯、可溶性蛋白质大分子和界面曲率调节剂的混合系统的温度诱导相序列。这些观察到的状态对应于纳米流体通道网络生长的阶段。通过应用热刺激,系统逐渐有序地形成由双连续脂质膜形成的双钻石立方晶格。高分辨率冷冻断裂电子显微镜表明,纳米域是由蛋白质纳入超分子立方体组装的纳米口袋中诱导的。这些结果有助于理解功能化自组装脂质纳米系统在刺激触发 LC 相变过程中的结构和动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验