Suppr超能文献

非均匀气体扩散层变形对质子交换膜燃料电池性能影响的数值分析

Numerical analysis of the impact of non-uniform gas diffusion layer deformation on the performance of proton exchange membrane fuel cells.

作者信息

Zheng Wang, Xia Yuzhen, Lei Hangwei, Wang Haoze, Hu Guilin

机构信息

School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology Hangzhou China

出版信息

RSC Adv. 2025 May 6;15(19):14745-14755. doi: 10.1039/d5ra01753j.

Abstract

Proton exchange membrane fuel cells (PEMFCs) typically require assembly under specific conditions to ensure good air-tightness, mass transfer, and electrical conductivity. However, the stress and strain produced on cell components due to assembly pressure can affect the performance and lifespan of the cells. To thoroughly investigate the effects of assembly mechanics on the transport processes and output performance of the cells, this study employed the finite element method (FEM) through the ANSYS static structural module to analyze the deformation of the gas diffusion layer (GDL) and its material property changes under pressures ranging from 0.0 to 2.5 MPa. The adjustment of material properties following non-uniform deformation of the GDL was implemented using UDFs (User-Defined Functions) in FLUENT. A three-dimensional two-phase flow computational fluid dynamics (CFD) model of the PEMFC was established, and the transport processes and output performance of a single PEMFC under different assembly pressures were simulated based on the variable material properties UDFs. The results indicate that the optimal assembly pressure for the PEMFC lies between 1.0 and 2.0 MPa. At low voltages of 0.3 to 0.4 V, the cell exhibits better performance under assembly pressures of 1.0 to 1.5 MPa; at voltages of 0.5 to 0.7 V, better performance is achieved under pressures of 1.0 to 2.0 MPa. Finally, the impacts of different operating temperatures, gas relative humidity levels, and gas stoichiometric ratios on the cell performance for an optimal pressure of 1.5 MPa were analyzed. The results show that the cell performs best at a temperature of 353.15 K, with an anode relative humidity of 80% and a cathode relative humidity of 100%, and with an anode stoichiometric ratio of 2 and a cathode stoichiometric ratio of 3. These findings provide a theoretical basis for the assembly and high-performance operation of fuel cells.

摘要

质子交换膜燃料电池(PEMFC)通常需要在特定条件下进行组装,以确保良好的气密性、传质和导电性。然而,组装压力在电池组件上产生的应力和应变会影响电池的性能和寿命。为了深入研究组装力学对电池传输过程和输出性能的影响,本研究通过ANSYS静态结构模块采用有限元方法(FEM),分析了气体扩散层(GDL)在0.0至2.5MPa压力下的变形及其材料性能变化。利用FLUENT中的用户自定义函数(UDF)对GDL非均匀变形后的材料性能进行调整。建立了PEMFC的三维两相流计算流体动力学(CFD)模型,并基于可变材料性能UDF模拟了不同组装压力下单个PEMFC的传输过程和输出性能。结果表明,PEMFC的最佳组装压力在1.0至2.0MPa之间。在0.3至0.4V的低电压下,电池在1.0至1.5MPa的组装压力下表现出更好的性能;在0.5至0.7V的电压下,在1.0至2.0MPa的压力下性能更佳。最后,分析了不同运行温度、气体相对湿度水平和气体化学计量比对1.5MPa最佳压力下电池性能的影响。结果表明,电池在353.15K的温度下性能最佳,阳极相对湿度为80%,阴极相对湿度为100%,阳极化学计量比为2,阴极化学计量比为3。这些发现为燃料电池的组装和高性能运行提供了理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99cb/12054719/c7b33514d3c2/d5ra01753j-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验