Suppr超能文献

用于处理属性缺失图的瓦瑟斯坦图神经网络

Wasserstein Graph Neural Networks for Graphs With Missing Attributes.

作者信息

Chen Zhixian, Ma Tengfei, Song Yangqiu, Wang Yang

出版信息

IEEE Trans Pattern Anal Mach Intell. 2025 Aug;47(8):7010-7020. doi: 10.1109/TPAMI.2025.3568480.

Abstract

Missing node attributes pose a common problem in real-world graphs, impacting the performance of graph neural networks' representation learning. Existing GNNs often struggle to effectively leverage incomplete attribute information, as they are not specifically designed for graphs with missing attributes. To address this issue, we propose a novel node representation learning framework called Wasserstein Graph Neural Network (WGNN). Our approach aims to maximize the utility of limited observed attribute information and account for uncertainty caused by missing values. We achieve this by representing nodes as low-dimensional distributions obtained through attribute matrix decomposition. Additionally, we enhance representation expressiveness by introducing a unique message-passing schema that aggregates distributional information from neighboring nodes in the Wasserstein space. We evaluate the performance of WGNN in node classification tasks using both synthetic and real-world datasets under two missing-attribute scenarios. Moreover, we demonstrate the applicability of WGNN in recovering missing values and tackling matrix completion problems, specifically in graphs involving users and items. Experimental results on both tasks convincingly demonstrate the superiority of our proposed method.

摘要

缺失的节点属性是现实世界图中的一个常见问题,会影响图神经网络表示学习的性能。现有的图神经网络通常难以有效利用不完整的属性信息,因为它们并非专门为具有缺失属性的图设计。为解决此问题,我们提出了一种名为瓦瑟斯坦图神经网络(WGNN)的新型节点表示学习框架。我们的方法旨在最大化有限观测属性信息的效用,并考虑缺失值导致的不确定性。我们通过将节点表示为通过属性矩阵分解获得的低维分布来实现这一点。此外,我们通过引入一种独特的消息传递模式来增强表示的表现力,该模式在瓦瑟斯坦空间中聚合来自相邻节点的分布信息。我们在两种缺失属性场景下,使用合成数据集和真实世界数据集评估了WGNN在节点分类任务中的性能。此外,我们展示了WGNN在恢复缺失值和解决矩阵补全问题方面的适用性,特别是在涉及用户和项目的图中。两项任务的实验结果令人信服地证明了我们提出的方法的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验