Suppr超能文献

通过特征增强提高对抗样本的可迁移性

Improving the Transferability of Adversarial Examples by Feature Augmentation.

作者信息

Wang Donghua, Yao Wen, Jiang Tingsong, Zheng Xiaohu, Wu Junqi

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 May 8;PP. doi: 10.1109/TNNLS.2025.3563855.

Abstract

Adversarial transferability is a significant property of adversarial examples, which renders the adversarial example capable of attacking unknown models. However, the models with different architectures on the same task would concentrate on different information, which weakens adversarial transferability. To enhance the adversarial transferability, input transformation-based attacks perform random transformation over input to find a better result that can resist such transformations, but these methods ignore the model discrepancy; ensemble attacks fuse multiple models to shrink the search space to ensure that the found adversarial examples work on these models, but ensemble attacks are resource-intensive. In this article, we propose a simple but effective feature augmentation attack (FAUG) method to improve adversarial transferability. We dynamically add random noise to intermediate features of the target model during the generation of adversarial examples, thereby avoiding overfitting the target model. Specifically, we first explore the noise tolerance of the model and disclose the discrepancy under different layers and noise strengths. Then, based on that analysis, we devise a dynamic random noise generation method, which determines noise strength according to the produced features in the mini-batch. Finally, we exploit the gradient-based attack algorithm on featureaugmented models, resulting in better adversarial transferability without introducing extra computation costs. Extensive experiments conducted on the ImageNet dataset across CNN and Transformer models corroborate the efficacy of our method, e.g., we achieve improvement of +30.67% and +5.57% on input transformation-based attacks and combination methods, respectively.

摘要

对抗迁移性是对抗样本的一个重要属性,它使对抗样本能够攻击未知模型。然而,在同一任务上具有不同架构的模型会关注不同的信息,这削弱了对抗迁移性。为了增强对抗迁移性,基于输入变换的攻击对输入进行随机变换以找到能抵抗此类变换的更好结果,但这些方法忽略了模型差异;集成攻击融合多个模型以缩小搜索空间,以确保找到的对抗样本能在这些模型上起作用,但集成攻击资源消耗大。在本文中,我们提出了一种简单而有效的特征增强攻击(FAUG)方法来提高对抗迁移性。在生成对抗样本期间,我们向目标模型的中间特征动态添加随机噪声,从而避免过度拟合目标模型。具体来说,我们首先探索模型的噪声容忍度,并揭示不同层和噪声强度下的差异。然后,基于该分析,我们设计了一种动态随机噪声生成方法,该方法根据小批量中生成的特征确定噪声强度。最后,我们在特征增强模型上利用基于梯度的攻击算法,在不引入额外计算成本的情况下实现了更好的对抗迁移性。在ImageNet数据集上针对CNN和Transformer模型进行的大量实验证实了我们方法的有效性,例如,我们在基于输入变换的攻击和组合方法上分别实现了+30.67%和+5.57%的提升。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验