Fahad Alhasson Haifa, Elhag Nagat, Saleem Alharbi Shuaa, Adam Ishag
Department of Information Technology, College of Computer, Qassim University, Buraydah 52571, Saudi Arabia.
Wad Medani College of Medical Sciences and Technology, Wad Medani, Sudan.
BMC Pregnancy Childbirth. 2025 May 8;25(1):548. doi: 10.1186/s12884-025-07677-y.
Identifying the risk factors for low APGAR scores at birth is critical for improving neonatal outcomes and guiding clinical interventions.
This study aimed to develop a machine-learning model that predicts low APGAR scores by incorporating maternal, fetal, and perinatal factors in Wad Medani, Sudan. Using a Random Forest Classifier, we performed hyper-parameter optimization through Grid Search cross-validation (CV) to identify the best-performing model configuration.
The optimized model achieved excellent predictive performance, as evidenced by high F1 scores, accuracy, and balanced precision-recall metrics on the test set. In addition to prediction, feature importance analysis was conducted to identify the most influential risk factors contributing to low APGAR scores. Key predictors included gestational age, maternal BMI, mode of delivery, and history of previous complications such as stillbirth or abortion. Using 5-fold cross-validation (CV), the random forest model performance scored accuracy at 96%, precision at 98%, recall at 97%, and F1-score at 97% when classifying infants with APGAR score.
This study underscores the importance of incorporating machine learning approaches in obstetric care to understand better and mitigate the risk factors associated with adverse neonatal outcomes, particularly low APGAR scores. The results provide a foundation for developing targeted interventions and improving prenatal care practices.
识别出生时阿氏评分低的风险因素对于改善新生儿结局和指导临床干预至关重要。
本研究旨在开发一种机器学习模型,通过纳入苏丹瓦德迈达尼的母亲、胎儿和围产期因素来预测低阿氏评分。我们使用随机森林分类器,通过网格搜索交叉验证(CV)进行超参数优化,以确定性能最佳的模型配置。
优化后的模型表现出出色的预测性能,测试集上的高F1分数、准确率和平衡的精确召回率指标证明了这一点。除了预测之外,还进行了特征重要性分析,以确定导致阿氏评分低的最具影响力的风险因素。关键预测因素包括胎龄、母亲体重指数、分娩方式以及既往死产或流产等并发症史。使用5折交叉验证(CV),在对阿氏评分的婴儿进行分类时,随机森林模型的性能得分如下:准确率为96%,精确率为98%,召回率为97%,F1分数为97%。
本研究强调了在产科护理中纳入机器学习方法的重要性,以便更好地理解和减轻与不良新生儿结局相关的风险因素,特别是低阿氏评分。研究结果为制定有针对性的干预措施和改善产前护理实践提供了基础。