Department of Computer Science, University of South Carolina, Columbia, SC, United States.
Department of Integrated Information Technology, University of South Carolina, Columbia, SC, United States.
J Med Internet Res. 2023 May 31;25:e44081. doi: 10.2196/44081.
Low birthweight (LBW) is a leading cause of neonatal mortality in the United States and a major causative factor of adverse health effects in newborns. Identifying high-risk patients early in prenatal care is crucial to preventing adverse outcomes. Previous studies have proposed various machine learning (ML) models for LBW prediction task, but they were limited by small and imbalanced data sets. Some authors attempted to address this through different data rebalancing methods. However, most of their reported performances did not reflect the models' actual performance in real-life scenarios. To date, few studies have successfully benchmarked the performance of ML models in maternal health; thus, it is critical to establish benchmarks to advance ML use to subsequently improve birth outcomes.
This study aimed to establish several key benchmarking ML models to predict LBW and systematically apply different rebalancing optimization methods to a large-scale and extremely imbalanced all-payer hospital record data set that connects mother and baby data at a state level in the United States. We also performed feature importance analysis to identify the most contributing features in the LBW classification task, which can aid in targeted intervention.
Our large data set consisted of 266,687 birth records across 6 years, and 8.63% (n=23,019) of records were labeled as LBW. To set up benchmarking ML models to predict LBW, we applied 7 classic ML models (ie, logistic regression, naive Bayes, random forest, extreme gradient boosting, adaptive boosting, multilayer perceptron, and sequential artificial neural network) while using 4 different data rebalancing methods: random undersampling, random oversampling, synthetic minority oversampling technique, and weight rebalancing. Owing to ethical considerations, in addition to ML evaluation metrics, we primarily used recall to evaluate model performance, indicating the number of correctly predicted LBW cases out of all actual LBW cases, as false negative health care outcomes could be fatal. We further analyzed feature importance to explore the degree to which each feature contributed to ML model prediction among our best-performing models.
We found that extreme gradient boosting achieved the highest recall score-0.70-using the weight rebalancing method. Our results showed that various data rebalancing methods improved the prediction performance of the LBW group substantially. From the feature importance analysis, maternal race, age, payment source, sum of predelivery emergency department and inpatient hospitalizations, predelivery disease profile, and different social vulnerability index components were important risk factors associated with LBW.
Our findings establish useful ML benchmarks to improve birth outcomes in the maternal health domain. They are informative to identify the minority class (ie, LBW) based on an extremely imbalanced data set, which may guide the development of personalized LBW early prevention, clinical interventions, and statewide maternal and infant health policy changes.
低出生体重(LBW)是美国新生儿死亡的主要原因,也是新生儿健康不良的主要致病因素。在产前护理中尽早识别高危患者对于预防不良后果至关重要。先前的研究已经提出了各种用于 LBW 预测任务的机器学习(ML)模型,但它们受到小且不平衡数据集的限制。一些作者试图通过不同的数据重平衡方法来解决这个问题。然而,他们报告的大多数性能并不能反映模型在实际场景中的实际性能。迄今为止,很少有研究成功地对 ML 模型在孕产妇健康方面的性能进行基准测试;因此,建立基准来推进 ML 的使用以随后改善出生结果至关重要。
本研究旨在建立几个关键的基准 ML 模型来预测 LBW,并系统地应用不同的重平衡优化方法来处理一个大规模且极度不平衡的全付费医院记录数据集,该数据集在美国州一级连接了母婴数据。我们还进行了特征重要性分析,以确定 LBW 分类任务中最有贡献的特征,这有助于有针对性的干预。
我们的大型数据集由 266687 份出生记录组成,跨越 6 年,其中 8.63%(n=23019)的记录被标记为 LBW。为了建立预测 LBW 的基准 ML 模型,我们应用了 7 种经典的 ML 模型(即逻辑回归、朴素贝叶斯、随机森林、极端梯度提升、自适应提升、多层感知机和顺序人工神经网络),同时使用了 4 种不同的数据重平衡方法:随机欠采样、随机过采样、合成少数过采样技术和加权重平衡。由于伦理考虑,除了 ML 评估指标外,我们主要使用召回率来评估模型性能,它表示所有实际 LBW 病例中正确预测的 LBW 病例数量,因为错误的阴性医疗保健结果可能是致命的。我们进一步分析了特征重要性,以探索在我们表现最佳的模型中,每个特征对 ML 模型预测的贡献程度。
我们发现,在使用加权重平衡方法时,极端梯度提升达到了最高的召回率-0.70。我们的结果表明,各种数据重平衡方法极大地提高了 LBW 组的预测性能。从特征重要性分析中,我们发现产妇种族、年龄、支付来源、分娩前急诊室和住院治疗的总和、分娩前疾病特征以及不同的社会脆弱性指数成分是与 LBW 相关的重要危险因素。
我们的研究结果建立了有用的 ML 基准,以改善孕产妇健康领域的出生结果。它们有助于根据极度不平衡的数据集识别少数群体(即 LBW),这可能有助于制定个性化的 LBW 早期预防、临床干预和全州母婴健康政策的改变。