Aldalur Itziar, Olmedo-Martinez Jorge Luis, Garcia Lorena, De Añastro Asier Fernández, Cavusoglu Koray, Mecerreyes David, Müller Alejandro Jesus, Armand Michel, Martinez-Ibañez María
Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Álava Technology Park, Albert Einstein 48, 01510, Vitoria-Gasteiz, Spain.
POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018, Donostia-San Sebastián, Spain.
ChemSusChem. 2025 Jul 17;18(14):e202500245. doi: 10.1002/cssc.202500245. Epub 2025 May 30.
With renewable energy and electric vehicles driving demand, safer and cost-effective alternatives to lithium-ion batteries are being sought. This study explores the development of a novel sodium salt, sodium (benzenesulfonyl)(trifluoromethanesulfonyl) imide (NaBTFSI), for all-solid-state sodium metal batteries (ASSSMBs). NaBTFSI offers a promising electrolyte option by improving sodium-ion transference number ( ), conductivity, and stability of sodium metal (Na°) anode cycling. When combined with poly(ethylene oxide), NaBTFSI forms safe solid polymer electrolytes with high mechanical strength, effectively mitigating dendrite growth and polarization issues common in sodium anodes. Characterization shows NaBTFSI enhances the electrochemical performance through π-π stacking interactions, which stabilize the polymer matrix and increase ionic conductivity (≈4.0 × 10 S cm) at elevated temperatures (70 °C). NaBTFSI-based electrolytes exhibit higher stability with sodium anodes than the conventional sodium bis(trifluoromethanesulfonyl)imide salt, supporting prolonged cycling in Na||Na symmetric cells and demonstrating potential for sustainable, high-performance ASSSMBs.
随着可再生能源和电动汽车推动需求增长,人们正在寻找比锂离子电池更安全、更具成本效益的替代品。本研究探索了一种新型钠盐——苯磺酰基(三氟甲磺酰基)亚胺钠(NaBTFSI)在全固态钠金属电池(ASSSMBs)中的发展。NaBTFSI通过提高钠离子迁移数、电导率以及钠金属(Na°)阳极循环的稳定性,提供了一种有前景的电解质选择。当与聚环氧乙烷结合时,NaBTFSI形成具有高机械强度的安全固体聚合物电解质,有效缓解了钠阳极中常见的枝晶生长和极化问题。表征显示,NaBTFSI通过π-π堆积相互作用增强了电化学性能,这种相互作用稳定了聚合物基体,并在高温(70°C)下提高了离子电导率(≈4.0×10⁻⁴ S cm⁻¹)。基于NaBTFSI的电解质与钠阳极的稳定性高于传统的双(三氟甲磺酰基)亚胺钠盐,支持Na||Na对称电池的长时间循环,并展示了可持续、高性能全固态钠金属电池的潜力。