Qiao Lixin, Rodriguez Peña Sergio, Martínez-Ibañez María, Santiago Alexander, Aldalur Itziar, Lobato Elias, Sanchez-Diez Eduardo, Zhang Yan, Manzano Hegoi, Zhu Haijin, Forsyth Maria, Armand Michel, Carrasco Javier, Zhang Heng
Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Álava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.
Department of Polymer Science and Technology, University of the Basque Country (UPV/EHU), M. de Lardizábal 3, 20018 San Sebastian, Spain.
J Am Chem Soc. 2022 Jun 8;144(22):9806-9816. doi: 10.1021/jacs.2c02260. Epub 2022 May 31.
Polymer electrolytes (PEs) with excellent flexibility, processability, and good contact with lithium metal (Li°) anodes have attracted substantial attention in both academic and industrial settings. However, conventional poly(ethylene oxide) (PEO)-based PEs suffer from a low lithium-ion transference number (), leading to a notorious concentration gradient and internal cell polarization. Here, we report two kinds of highly lithium-ion conductive and solvent-free PEs using the benzene-based lithium salts, lithium (benzenesulfonyl)(trifluoromethanesulfonyl)imide (LiBTFSI) and lithium (2,4,6-triisopropylbenzenesulfonyl)(trifluoromethanesulfonyl)imide (LiTPBTFSI), which show significantly improved and selective lithium-ion conductivity. Using molecular dynamics simulations, we pinpoint the strong π-π stacking interaction between pairs of benzene-based anions as the cause of this improvement. In addition, we show that Li°∥Li° and Li°∥LiFePO cells with the LiBTFSI/PEO electrolytes present enhanced cycling performance. By considering π-π stacking interactions as a new molecular-level design route of salts for electrolyte, this work provides an efficient and facile novel strategy for attaining highly selective lithium-ion conductive PEs.
具有出色柔韧性、可加工性且与锂金属(Li°)阳极具有良好接触性的聚合物电解质(PEs)在学术和工业领域都引起了广泛关注。然而,传统的基于聚环氧乙烷(PEO)的聚合物电解质锂离子迁移数()较低,导致出现严重的浓度梯度和电池内部极化现象。在此,我们报道了两种使用苯基金属锂盐——苯磺酰(三氟甲磺酰)亚胺锂(LiBTFSI)和2,4,6 - 三异丙基苯磺酰(三氟甲磺酰)亚胺锂(LiTPBTFSI)的高锂离子传导性且无溶剂的聚合物电解质,它们表现出显著提高的锂离子迁移数和选择性锂离子传导性。通过分子动力学模拟,我们确定了苯基金属阴离子对之间强烈的π - π堆积相互作用是这种性能提升的原因。此外,我们还表明,采用LiBTFSI/PEO电解质的Li°∥Li°和Li°∥LiFePO电池具有增强的循环性能。通过将π - π堆积相互作用视为电解质盐的一种新的分子水平设计途径,这项工作为获得高选择性锂离子传导聚合物电解质提供了一种高效且简便的新策略。