Gayathri Parthasarathy, Qiu Sheng-Qi, Yu Zhen-Qiang
College of Chemistry and Environmental Engineering Shenzhen University, Shenzhen 518060, China.
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
Mater Horiz. 2025 Jul 28;12(15):5627-5653. doi: 10.1039/d4mh01928h.
Research on circularly polarized luminescent (CPL) materials has evolved into a hot research topic because of their potential application prospects in the optoelectronics and chiroptical fields. Achieving a high value and high quantum efficiency is essential and challenging in CPL research. To date, various material design strategies, such as chiral organic small molecules, CPL polymers, chiral lanthanide complexes, chiral liquid crystals and supramolecular self-assembly, have been proposed to achieve a CPL emitter with a high value. Among them, chiral luminescent liquid crystals (CLLCs) are recognized as a key approach for achieving CPL materials with a high factor owing to their exceptional optical properties and flexibility. In this review, we focused on the various synthesis methods employed for developing CLLCs, their properties and their potential applications. The synthesis section discusses various approaches employed to design chiral luminescent liquid crystals, including (i) doping systems for incorporating chiral dopants into achiral liquid crystalline hosts and (ii) nondoping methods for preparing AIE active chiral luminescent liquid crystalline materials. The section on properties highlights how chirality influences the optical, electronic and structural characteristics of CLLCs. Finally, we discuss the diverse applications of CLLCs from photonics and chiral switching to optoelectronic devices and beyond. This review provides new insights into recent research developments and future opportunities in this booming research field. We anticipate that this review could offer a clear picture of the interesting properties of chiral luminescent liquid crystal materials and inspire more researchers to work in this potential area.
由于圆偏振发光(CPL)材料在光电子学和手性光学领域具有潜在的应用前景,其研究已发展成为一个热门研究课题。在CPL研究中,实现高不对称因子值和高量子效率至关重要且具有挑战性。迄今为止,已经提出了各种材料设计策略,如手性有机小分子、CPL聚合物、手性镧系配合物、手性液晶和超分子自组装,以实现具有高不对称因子值的CPL发光体。其中,手性发光液晶(CLLCs)因其优异的光学性能和灵活性,被认为是实现具有高不对称因子的CPL材料的关键途径。在这篇综述中,我们重点关注了用于开发CLLCs的各种合成方法、它们的性质及其潜在应用。合成部分讨论了用于设计手性发光液晶的各种方法,包括(i)将手性掺杂剂掺入非手性液晶主体的掺杂体系,以及(ii)制备具有聚集诱导发光(AIE)活性的手性发光液晶材料的非掺杂方法。性质部分重点介绍了手性如何影响CLLCs的光学、电子和结构特性。最后,我们讨论了CLLCs从光子学、手性开关到光电器件及其他领域的各种应用。这篇综述为这个蓬勃发展的研究领域的最新研究进展和未来机遇提供了新的见解。我们预计这篇综述能够清晰呈现手性发光液晶材料的有趣性质,并激励更多研究人员在这个有潜力的领域开展工作。