Miller Jake, Perrier Quentin, Rengaraj Arunkumar, Bowlby Joshua, Byers Lori, Peveri Emma, Jeong Wonwoo, Ritchey Thomas, Gambelli Alberto Maria, Rossi Arianna, Calafiore Riccardo, Tomei Alice, Orlando Giuseppe, Asthana Amish
Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC USA.
Department of Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC USA.
Curr Transplant Rep. 2025;12(1):17. doi: 10.1007/s40472-025-00470-y. Epub 2025 May 6.
PURPOSE OF THE REVIEW: Despite recent advancements in technology for the treatment of type 1 diabetes (T1D), exogenous insulin delivery through automated devices remains the gold standard for treatment. This review will explore progress made in pancreatic islet bioengineering within the field of beta-cell replacement for T1D treatment. RECENT FINDINGS: First, we will focus on the use of decellularized extracellular matrices (dECM) as a platform for pancreatic organoid development. These matrices preserve microarchitecture and essential biochemical signals for cell differentiation, offering a promising alternative to synthetic matrices. Second, advancements in 3D bioprinting for creating complex organ structures like pancreatic islets will be discussed. This technology allows for increased precision and customization of cellular models, crucial for replicating native pancreatic islet functionality. Finally, this review will explore the use of stem cell-derived organoids to generate insulin-producing islet-like cells. While these organoids face challenges such as functional immaturity and poor vascularization, they represent a significant advancement for disease modeling, drug screening, and autologous islet transplantation. SUMMARY: These innovative approaches promise to revolutionize T1D treatment by overcoming the limitations of traditional therapies based on human pancreatic islets.
综述目的:尽管近期治疗1型糖尿病(T1D)的技术取得了进展,但通过自动化设备进行外源性胰岛素给药仍然是治疗的金标准。本综述将探讨在用于T1D治疗的β细胞替代领域中,胰岛生物工程所取得的进展。 最新发现:首先,我们将重点关注使用去细胞化细胞外基质(dECM)作为胰腺类器官发育的平台。这些基质保留了用于细胞分化的微结构和重要生化信号,为合成基质提供了一种有前景的替代方案。其次,将讨论用于创建诸如胰岛等复杂器官结构的3D生物打印技术的进展。这项技术能够提高细胞模型的精度和定制性,这对于复制天然胰岛功能至关重要。最后,本综述将探讨使用干细胞衍生的类器官来生成产生胰岛素的胰岛样细胞。虽然这些类器官面临功能不成熟和血管化不良等挑战,但它们在疾病建模、药物筛选和自体胰岛移植方面代表了一项重大进展。 总结:这些创新方法有望通过克服基于人类胰岛的传统疗法的局限性,彻底改变T1D的治疗。
Curr Transplant Rep. 2025
Front Immunol. 2025-1-21
Methods Mol Biol. 2024-12-21
Tissue Eng Part B Rev. 2021-6
Protein Cell. 2022-4
Front Endocrinol (Lausanne). 2021
J Nanobiotechnology. 2022-6-28
J Endocrinol. 2023-8-1
Biofabrication. 2022-9-27
Prog Biomed Eng (Bristol). 2022-4
Front Bioeng Biotechnol. 2021-8-26
Am J Transplant. 2021-9
Cell Rep Med. 2021-4-20