文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

fermentation characteristics of polysaccharide from and its effects on type 2 diabetes mellitus gut microbiota.

作者信息

Zhao Yang, Wen Juwei, Yang Yu, Jia Lina, Ma Qian, Jia Weiguo, Qi Wei

机构信息

College of Life Science, Zhuhai College of Science and Technology, Zhuhai, China.

College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.

出版信息

PeerJ. 2025 May 5;13:e19374. doi: 10.7717/peerj.19374. eCollection 2025.


DOI:10.7717/peerj.19374
PMID:40343088
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12060902/
Abstract

BACKGROUND: Increasing evidence has shown a close relation between the pathogenesis of type 2 diabetes mellitus (T2DM), which is a global health problem with multifactorial etiopathogenesis, and gut microbiota. METHODS: During fermentation of (known as Xuanshen) polysaccharide (SNP) by T2DM gut microbiota, effects of SNP on the gas content, production of short-chain fatty acids (SCFAs), metabolite profile and microbiota composition were studied. RESULTS: Analysis of chemical compositions indicates that the total sugar content of SNP was found to be as high as 87.35 ± 0.13% (w/w). SNP treatment significantly improved the gas volume and composition in T2DM fecal matter. Moreover, intestinal flora degraded SNP to produce SCFAs, thus regulating SCFA production and composition. Metabolomic analysis implied that SNP shows potential to regulate the five gut metabolites (L-valine, L-leucine, L-isoleucine, L-alanine, and xylitol) in T2DM fecal matter. Furthermore, dysbiosis of gut microbiota induced by T2DM was reversed by SNP. The evidence includes decreasing / ratio at phylum level promoting proliferation of the bacterial abundance of , , , and and decreased bacterial abundance of . Based on these findings, the action mechanism of SNP against T2DM was clarified by reshaping microbiota and regulating intestinal metabolites, and a novel target was provided for interventions of T2DM.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/bb23dc5ca2f0/peerj-13-19374-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/7fcf393ea38f/peerj-13-19374-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/ed01c6ee8900/peerj-13-19374-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/4cbb5f13df3c/peerj-13-19374-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/741688572e2a/peerj-13-19374-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/94269c7be736/peerj-13-19374-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/a7a3a20fff1f/peerj-13-19374-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/20a97a8dbf15/peerj-13-19374-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/e5ca99cd02fc/peerj-13-19374-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/83042115f42c/peerj-13-19374-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/bb23dc5ca2f0/peerj-13-19374-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/7fcf393ea38f/peerj-13-19374-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/ed01c6ee8900/peerj-13-19374-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/4cbb5f13df3c/peerj-13-19374-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/741688572e2a/peerj-13-19374-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/94269c7be736/peerj-13-19374-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/a7a3a20fff1f/peerj-13-19374-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/20a97a8dbf15/peerj-13-19374-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/e5ca99cd02fc/peerj-13-19374-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/83042115f42c/peerj-13-19374-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78eb/12060902/bb23dc5ca2f0/peerj-13-19374-g010.jpg

相似文献

[1]
fermentation characteristics of polysaccharide from and its effects on type 2 diabetes mellitus gut microbiota.

PeerJ. 2025-5-5

[2]
Fermentation-enriched quinoa β-glucan ameliorates disturbed gut microbiota and metabolism in type 2 diabetes mellitus mice.

Int J Biol Macromol. 2025-5

[3]
Cyclocarya paliurus polysaccharides alleviate type 2 diabetic symptoms by modulating gut microbiota and short-chain fatty acids.

Phytomedicine. 2020-10

[4]
Fibroblast growth factor 21 improves insulin sensitivity by modulating the bile acid-gut microbiota axis in type Ⅱ diabetic mice.

Free Radic Biol Med. 2024-11-1

[5]
In vitro fermentation of Auricularia auricula polysaccharides and their regulation of human gut microbiota and metabolism.

Int J Biol Macromol. 2025-5

[6]
Regulating the gut microbiota and SCFAs in the faeces of T2DM rats should be one of antidiabetic mechanisms of mogrosides in the fruits of Siraitia grosvenorii.

J Ethnopharmacol. 2021-6-28

[7]
Bile-processed Rhizoma Coptidis alleviates type 2 diabetes mellitus through modulating the gut microbiota and short-chain fatty acid metabolism.

Int Immunopharmacol. 2025-5-27

[8]
Prebiotic characteristics of degraded polysaccharides from Acanthopanax senticosus polysaccharide on broilers gut microbiota based on in vitro digestion and fecal fermentation.

Poult Sci. 2024-7

[9]
Effects of a homogeneous polysaccharide from Sijunzi decoction on human intestinal microbes and short chain fatty acids in vitro.

J Ethnopharmacol. 2018-6-15

[10]
Vinegar-processed Schisandra chinensis polysaccharide ameliorates type 2 diabetes via modulation serum metabolic profiles, gut microbiota, and fecal SCFAs.

Int J Biol Macromol. 2025-3

本文引用的文献

[1]
Hydrogen and Methane Detection in Breath in Response to Two Different Types of Dietary Fiber and Its Relationship to Postprandial Glucose Concentration in Obese Patients with Type 2 Diabetes and Normoglycemic Subjects.

Nutrients. 2025-3-6

[2]
When short-chain fatty acids meet type 2 diabetes mellitus: Revealing mechanisms, envisioning therapies.

Biochem Pharmacol. 2025-3

[3]
Sodium butyrate prevents lipopolysaccharide induced inflammation and restores the expression of tight junction protein in human epithelial Caco-2 cells.

Cell Immunol. 2025-2

[4]
Targeting gut microbiota as a therapeutic target in T2DM: A review of multi-target interactions of probiotics, prebiotics, postbiotics, and synbiotics with the intestinal barrier.

Pharmacol Res. 2024-12

[5]
Role of short-chain fatty acids in host physiology.

Animal Model Exp Med. 2024-10

[6]
Natural products with potential hypoglycemic activity in T2DM: 2019-2023.

Phytochemistry. 2024-7

[7]
Association of short-chain fatty acids and the gut microbiome with type 2 diabetes: Evidence from the Henan Rural Cohort.

Nutr Metab Cardiovasc Dis. 2024-7

[8]
Polysaccharides from Phellinus linteus attenuate type 2 diabetes mellitus in rats via modulation of gut microbiota and bile acid metabolism.

Int J Biol Macromol. 2024-3

[9]
The functional roles of short chain fatty acids as postbiotics in human gut: future perspectives.

Food Sci Biotechnol. 2023-8-28

[10]
Functional alterations and predictive capacity of gut microbiome in type 2 diabetes.

Sci Rep. 2023-12-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索