Anwar Sidra, Dingley Angus, Vinoth Thailammai, Liang Weiguang, Sindel Brian M, George Laurel, Wang Chun H, Cazzonelli Christopher I
Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
Agriculture and Food Research Unit, CSIRO, Clunies Ross Street, Acton, ACT 2601, Australia.
Hortic Res. 2025 Feb 19;12(6):uhaf053. doi: 10.1093/hr/uhaf053. eCollection 2025 Jun.
Artificial tomato pollination methods rely on cellular vibrations from air displacement, electric vibration wands and trellis tapping, which have potential to spread pathogens. Bioacoustic frequencies emitted from buzzing bees to ultrasonication can vibrate plant cells without physical contact. The effects of frequency-dependent sonication on the poricidal anther cone sheath, self-pollination, seed set, and fruit size remain unclear. We engineered devices to investigate the frequency-dependent power-law behaviour of floral living cells from greenhouse-grown tomato varieties-contrasting contact-induced oscillations from a vibrating wand and mechanical shaker arm with precision noncontact sonication emitted by a subwoofer speaker. The velocity and acceleration of vibrating flowers and impact on poricidal anther cone sheath cellular structures, self-pollination, and fruit development were assessed. Sonic frequencies ranging from 50 to 10 000 Hz increased pollination, fruit size, weight, and seed set in Sweetelle, Endeavour, Paulanca, and Managua commercial varieties. Scanning electron microscopy revealed sonication separated the intertwined trichomes and unzipped their meshed network that locks the lobes of the anther cone sheath together thereby releasing pollen grains. Near ultra-sonic frequencies boosted fruit size, whereas seed set remained constant thereby challenging the floral cell power-law rheological characteristics under different frequency scales. Tomato flowers displayed a low power-law cell behaviour to frequency-dependent sonication enabling its effectiveness as a precision noncontact technology to boost pollination and tomato fruit size without a substrate-borne component.
人工番茄授粉方法依赖于空气置换产生的细胞振动、电动振动棒和网格敲击,这些方法有可能传播病原体。从蜜蜂嗡嗡声到超声处理发出的生物声学频率可以在不进行物理接触的情况下使植物细胞振动。频率依赖性超声处理对孔裂花药锥鞘、自花授粉、坐果和果实大小的影响仍不清楚。我们设计了装置,以研究温室种植的番茄品种花活细胞的频率依赖性幂律行为——将振动棒和机械摇臂产生的接触诱导振荡与低音炮扬声器发出的精确非接触超声处理进行对比。评估了振动花朵的速度和加速度以及对孔裂花药锥鞘细胞结构、自花授粉和果实发育的影响。在Sweetelle、Endeavour、Paulanca和Managua等商业品种中,50至10000赫兹的声波频率提高了授粉率、果实大小、重量和坐果率。扫描电子显微镜显示,超声处理分离了交织在一起的毛状体,并解开了将花药锥鞘裂片锁定在一起的网状网络,从而释放出花粉粒。近超声波频率提高了果实大小,而坐果率保持不变,从而挑战了不同频率尺度下花细胞的幂律流变特性。番茄花对频率依赖性超声处理表现出低幂律细胞行为,使其能够作为一种精确的非接触技术有效地提高授粉率和番茄果实大小,而无需基质传播成分。