Armenta-Castro Arnoldo, Oyervides-Muñoz Mariel Araceli, Aguayo-Acosta Alberto, Lucero-Saucedo Sofia Liliana, Robles-Zamora Alejandro, Rodriguez-Aguillón Kassandra O, Ovalle-Carcaño Antonio, Parra-Saldívar Roberto, Sosa-Hernández Juan Eduardo
Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico.
Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, Mexico.
PLOS Glob Public Health. 2025 May 9;5(5):e0003756. doi: 10.1371/journal.pgph.0003756. eCollection 2025.
In this work, we report on the performance of an extensive, building-by-building wastewater surveillance platform deployed across 38 locations of the largest private university system in Mexico, spanning 19 of the 32 states, to detect SARS-CoV-2 genetic materials during the COVID-19 pandemic. Sampling took place weekly from January 2021 and June 2022. Data from 343 sampling sites was clustered by campus and by state and evaluated through its correlation with the seven-day average of daily new COVID-19 cases in each cluster. Statistically significant linear correlations (p-values below 0.05) were found in 25 of the 38 campuses and 13 of the 19 states. Moreover, to evaluate the effectiveness of epidemiologic containment measures taken by the institution across 2021 and the potential of university campuses as representative sampling points for surveillance in future public health emergencies in the Monterrey Metropolitan Area, correlation between new COVID-19 cases and viral loads in weekly wastewater samples was found to be stronger in Dulces Nombres, the largest wastewater treatment plant in the city (Pearson coefficient: 0.6456, p-value: 6.36710-8), than in the largest university campus in the study (Pearson coefficient: 0.4860, p-value: 8.288x10-5). However, when comparing the data after urban mobility returned to pre-pandemic levels, correlation levels in both locations became comparable (0.894 for the university campus and 0.865 for Dulces Nombres). This work provides a basic framework for the implementation and analysis of similar decentralized surveillance platforms to address future sanitary emergencies, allowing for an efficient return to priority in-person activities while preventing university campuses from becoming transmission hotspots.
在这项工作中,我们报告了一个广泛的、逐栋建筑的废水监测平台的运行情况。该平台部署在墨西哥最大的私立大学系统的38个地点,覆盖32个州中的19个,用于在新冠疫情期间检测严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的遗传物质。采样于2021年1月至2022年6月每周进行一次。来自343个采样点的数据按校区和州进行聚类,并通过与每个聚类中新冠每日新增病例的七天平均值的相关性进行评估。在38个校区中的25个以及19个州中的13个发现了具有统计学意义的线性相关性(p值低于0.05)。此外,为了评估该机构在2021年采取的疫情防控措施的有效性以及大学校园作为蒙特雷大都市区未来公共卫生紧急情况监测代表性采样点的潜力,发现该市最大的污水处理厂杜尔塞斯·农布雷(Dulces Nombres)每周废水样本中的新冠新增病例与病毒载量之间的相关性(皮尔逊系数:0.6456,p值:6.367×10⁻⁸)比研究中最大的大学校园更强(皮尔逊系数:0.4860,p值:8.288×10⁻⁵)。然而,当比较城市流动性恢复到疫情前水平后的数据时,两个地点的相关性水平变得相当(大学校园为0.894,杜尔塞斯·农布雷为0.865)。这项工作为实施和分析类似的分散式监测平台以应对未来的卫生紧急情况提供了一个基本框架,有助于在防止大学校园成为传播热点的同时,高效地恢复优先的面对面活动。