Suppr超能文献

一种基于随机森林子集特征选择和带注意力机制的双向门控循环单元的两阶段预测模型:在股票指数中的应用。

A two-stage forecasting model using random forest subset-based feature selection and BiGRU with attention mechanism: Application to stock indices.

作者信息

Azman Shafiqah, Pathmanathan Dharini, Balakrishnan Vimala

机构信息

Institute of Mathematical Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.

Universiti Malaya Centre for Data Analytics, Universiti Malaya, Kuala Lumpur, Malaysia.

出版信息

PLoS One. 2025 May 9;20(5):e0323015. doi: 10.1371/journal.pone.0323015. eCollection 2025.

Abstract

The heteroscedastic and volatile characteristics of stock price data have attracted the interest of researchers from various disciplines, particularly in the realm of price forecasting. The stock market's non-stationary and volatile nature, driven by complex interrelationships among financial assets, economic developments, and market participants, poses significant challenges for accurate forecasting. This research aims to develop a robust forecasting model to improve the accuracy and reliability of stock price predictions using machine learning. A two-stage forecasting model is introduced. First, a random forest subset-based (RFS) feature selection with repeated [Formula: see text]-fold cross-validation selects the best subset of features from eight predictors: highest price, lowest price, closing price, volume, change, price change ratio, and amplitude. These features are then used as input in a bidirectional gated recurrent unit with an attention mechanism (BiGRU-AM) model to forecast daily opening prices of ten stock indices. The proposed model exhibits superior forecasting performance across ten stock indices when compared to twelve benchmarks, evaluated using root mean squared error (RMSE), mean absolute error (MAE), and the coefficient of determination, [Formula: see text]. The improved prediction accuracy enables financial professionals to make more reliable investment decisions, reducing risks and increasing profits.

摘要

股价数据的异方差和波动性特征吸引了来自各个学科的研究人员的关注,尤其是在价格预测领域。由金融资产、经济发展和市场参与者之间复杂的相互关系驱动的股票市场的非平稳性和波动性,对准确预测构成了重大挑战。本研究旨在开发一种强大的预测模型,以提高使用机器学习进行股价预测的准确性和可靠性。引入了一种两阶段预测模型。首先,基于随机森林子集(RFS)的特征选择与重复的[公式:见正文]折交叉验证从八个预测变量中选择最佳特征子集:最高价、最低价、收盘价、成交量、变化、价格变化率和振幅。然后将这些特征用作具有注意力机制的双向门控循环单元(BiGRU-AM)模型的输入,以预测十个股票指数的每日开盘价。与十二个基准相比,所提出的模型在十个股票指数上表现出卓越的预测性能,使用均方根误差(RMSE)、平均绝对误差(MAE)和决定系数[公式:见正文]进行评估。提高的预测准确性使金融专业人员能够做出更可靠的投资决策,降低风险并增加利润。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54f0/12064028/a621b3a1ac61/pone.0323015.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验