Chen Yang, Baroni Arthur, Tänzer Torne, Nielsen Leonard, Liebi Marianne
Center for Photon Science, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland.
School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley, PA1 2BE, UK.
Adv Sci (Weinh). 2025 Jul;12(27):e2502075. doi: 10.1002/advs.202502075. Epub 2025 May 8.
Most visible light imaging methods using polarization to obtain ultrastructure information are limited to 2D analysis or require demanding phase measurements to be extended to 3D. A novel 3D polarized light imaging technique based on Müller-matrix formulations is introduced which numerically reconstructs 3D optical birefringence, that is anisotropic refractive indices and optical axis orientation, in each volumetric unit of sample. The new method is demonstrated, tomographic Müller-polarimetric microscopy, in simulation and using experimental data of 3D macroscopic sample of human trabecular bone sample, where the local main orientation of nanoscale collagen fibers is extracted with a resolution of ≈ 20 µm. Tomographic Müller-polarimetric microscopy offers a low-cost and experimentally simple imaging approach to access the ultrastructure which is not directly resolvable, in a wide range of biological and composite materials.
大多数利用偏振来获取超微结构信息的可见光成像方法仅限于二维分析,或者需要进行复杂的相位测量才能扩展到三维。本文介绍了一种基于穆勒矩阵公式的新型三维偏振光成像技术,该技术通过数值重建样本每个体积单元中的三维光学双折射,即各向异性折射率和光轴方向。这种新方法被称为断层穆勒偏振显微镜,通过模拟以及使用人小梁骨样本的三维宏观样本的实验数据进行了验证,其中纳米级胶原纤维的局部主要取向以约20微米的分辨率被提取出来。断层穆勒偏振显微镜提供了一种低成本且实验简单的成像方法,可用于获取广泛的生物和复合材料中无法直接分辨的超微结构。