Suppr超能文献

通过穆勒矩阵成像揭示的良性和恶性前列腺组织的光学各向异性成分

Optical anisotropy composition of benign and malignant prostate tissues revealed by Mueller-matrix imaging.

作者信息

Sieryi Oleksii, Ushenko Yuriy, Ushenko Volodimir, Dubolazov Olexander, Syvokorovskaya Anastasia V, Vanchulyak Oleh, Ushenko Alexander G, Gorsky Mykhailo, Tomka Yuriy, Bykov Alexander, Yan Wenjun, Meglinski Igor

机构信息

Optoelectronics and Measurement Techniques, University of Oulu, Oulu, Finland.

Optics and Publishing Department, Chernivtsi National University, Chernivtsi, Ukraine.

出版信息

Biomed Opt Express. 2022 Oct 25;13(11):6019-6034. doi: 10.1364/BOE.464420. eCollection 2022 Nov 1.

Abstract

A Mueller matrix imaging approach is employed to disclose the three-dimensional composition framework of optical anisotropy within cancerous biotissues. Visualized by the Mueller matrix technique spatial architecture of optical anisotropy of tissues is characterised by high-order statistical moments. Thus, quantitative analysis of the spatial distribution of optical anisotropy, such as linear and circular birefringence and dichroism, is revealed by using high-order statistical moments, enabling definitively discriminate prostate adenoma and carcinoma. The developed approach provides greater (>90%) accuracy of diagnostic achieved by using either the 3-rd or 4-th order statistical moments of the linear anisotropy parameters. Noticeable difference is observed between prostate adenoma and carcinoma tissue samples in terms of the extinction coefficient and the degree of depolarisation. Juxtaposition to other optical diagnostic modalities demonstrates the greater accuracy of the approach described herein, paving the way for its wider application in cancer diagnosis and tissue characterization.

摘要

采用穆勒矩阵成像方法来揭示癌性生物组织内光学各向异性的三维组成框架。通过穆勒矩阵技术可视化的组织光学各向异性的空间结构由高阶统计矩表征。因此,利用高阶统计矩可以揭示光学各向异性空间分布的定量分析,如线性和圆双折射及二向色性,从而能够明确区分前列腺腺瘤和癌。所开发的方法通过使用线性各向异性参数的三阶或四阶统计矩实现了更高(>90%)的诊断准确性。在消光系数和去极化程度方面,前列腺腺瘤和癌组织样本之间存在明显差异。与其他光学诊断方式相比,本文所述方法具有更高的准确性,为其在癌症诊断和组织表征中的更广泛应用铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验