Moghaddam Hamid Kardan, Rahimzadeh Kivi Zahra, Abtahizadeh Ebrahim, Abolfathi Soroush
Department of Water Resources Study, Water Research Institute, Tehran, Iran.
Department of Water Engineering, University of Tehran, Iran.
J Environ Manage. 2025 Jun;385:125600. doi: 10.1016/j.jenvman.2025.125600. Epub 2025 May 8.
Addressing sustainable urban water supply has become one of the most critical challenges for modern megacities, particularly in arid and semi-arid regions where rapid urbanization and climate change converge to exacerbate resource scarcity. Tehran, a metropolis under mounting water stress, exemplifies this global crisis. With population pressures, migration, poor urban planning, and inadequate environmental management intensifying the demand for water, reliance on groundwater surged to over 51 % of the city's total supply by 2021. This unsustainable dependence is compounded by severe aquifer depletion, now declining at an alarming rate of 32 cm annually. This study adopts advanced machine learning approaches to provide a forward-looking, integrative approach to understanding and mitigating the impacts of urban centralization, land-use mismanagement, and climate variability on Tehran's water resources. By leveraging hybrid simulation models, combining Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) models with three optimization techniques (i.e. Fire Hawk Optimizer (FHO), Whale Optimization Algorithm (WOA), and Horse Optimization Algorithm (HOA)) this research offers a powerful tool for managing water allocation across five critical dam reservoirs and the Tehran aquifer. Our analysis reveals that the RNN-FHO model demonstrates superior performance in predicting dam inflows, while the RNN-WOA model excels in forecasting groundwater table fluctuations, providing a vital roadmap for water resource planners. We developed a robust conceptual model to address anticipated drinking water shortages by supplementing surface water with groundwater resources. To simulate future conditions, we employed three state-of-the-art climate models (MRI-ESM2, CNRM-CM6-1, and BCC-CSM2) across three emission pathways (SSP1.26, SSP2.45, and SSP5.85) for the period 2021-2050. The projections indicate a troubling trend: dam inflows could decline by 8% in the most optimistic scenario and by 11 % in the worst case. Furthermore, by 2030, water demand in Tehran is expected to exceed 2.2 BCM, intensifying pressure on groundwater resources and necessitating large-scale water transfers. Excessive groundwater extraction, ranging from 100 to 300 MCM, would result in drastic aquifer drawdowns of 46-171 cm, threatening both hydrological stability and environmental health. This study highlights the critical need for a paradigm shift in water management practices. A strategic approach, encompassing reductions in per capita water consumption, extensive recycling, improved use of treated effluent in urban landscapes, and optimized water allocation, is essential to avert a looming water crisis. The methodologies and insights presented in this study offer transformative solutions for water-stressed urban environments worldwide.
解决城市可持续供水问题已成为现代特大城市面临的最关键挑战之一,尤其是在干旱和半干旱地区,快速城市化和气候变化交织在一起,加剧了资源稀缺问题。德黑兰这座面临日益严重水压力的大都市,就是这一全球危机的典型代表。随着人口压力、移民、城市规划不善以及环境管理不足导致用水需求不断增加,到2021年,对地下水的依赖飙升至该市总供水量的51%以上。这种不可持续的依赖因含水层严重枯竭而更加严重,目前正以每年32厘米的惊人速度下降。本研究采用先进的机器学习方法,提供一种前瞻性、综合性的方法,以理解和减轻城市集中化、土地利用管理不善以及气候变化对德黑兰水资源的影响。通过利用混合模拟模型,将循环神经网络(RNN)和长短期记忆(LSTM)模型与三种优化技术(即火鹰优化器(FHO)、鲸鱼优化算法(WOA)和马优化算法(HOA))相结合本研究为管理五个关键大坝水库和德黑兰含水层的水资源分配提供了一个强大工具。我们的分析表明,RNN - FHO模型在预测大坝入流量方面表现卓越,而RNN - WOA模型在预测地下水位波动方面表现出色,为水资源规划者提供了至关重要的路线图。我们开发了一个强大的概念模型,通过用地下水资源补充地表水来应对预期的饮用水短缺问题。为了模拟未来状况,我们在2021 - 2050年期间,针对三种排放路径(SSP1.26、SSP2.45和SSP5.85)采用了三种最先进的气候模型(MRI - ESM2、CNRM - CM6 - 1和BCC - CSM2)。预测结果显示出令人担忧的趋势:在最乐观的情况下,大坝入流量可能下降8%,在最坏的情况下可能下降11%。此外,到2030年,德黑兰的用水需求预计将超过22亿立方米,这将加大对地下水资源的压力,并需要进行大规模的调水。过度抽取地下水,范围从100亿立方米到300亿立方米,将导致含水层急剧下降46 - 171厘米,威胁水文稳定性和环境健康。本研究强调了水资源管理实践中范式转变的迫切需求。一种战略方法,包括减少人均用水量、广泛的水循环利用、改善城市景观中处理后废水的利用以及优化水资源分配,对于避免迫在眉睫的水危机至关重要。本研究中提出的方法和见解为全球面临水资源压力的城市环境提供了变革性解决方案。