Lin Kaichun, Qin Jingjun, Liu Zhang, Xu Weicheng, Li Meng, Zheng Yuanzhi, Han Wei, Zhou Guangying, Fang Jianzhang, Fang Zhanqiang, Peng Feng, Yeung King Lun
School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China.
Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
Environ Res. 2025 Aug 15;279(Pt 1):121789. doi: 10.1016/j.envres.2025.121789. Epub 2025 May 7.
Pollutant removal through green photocatalysis combined with advanced oxidation processes (AOPs) is critical for efficient wastewater treatment but is limited by poor light harvesting and inefficient oxidant activation. This study addresses these challenges through developing a Co-incorporated UiO-bpydc MOF for enhanced visible-light-driven photocatalysis via peroxymonosulfate (PMS) bridged ligand-to-metal charge transfer (LMCT). The MOF was synthesized through direct cobalt complexation into the UiO-bpydc framework for enabling visible light absorption. The UiO-bpydc(Co) achieved 95.8 % degradation of lomefloxacin (LOM) within 30 min in the presence of PMS, attributing to narrowed bandgap (i.e., 2.82 eV), improved charge transfer via Co centers, and increased pollutant affinity due to electron-rich ligand. Additionally, the generation of long-lifespan singlet oxygen (O, 41.8 %) was identified as the key reactive species. Theoretical calculations indicated a reduced HOMO-LUMO gap upon the formation of a -Co-OOSO bridge, which promotes carrier separation and improves pollutant-catalyst interactions. The degradation pathways and toxicity evolution of intermediates were clarified, while the exceptional stability, recyclability, and broad pollutant applicability of UiO-bpydc(Co) demonstrate its potential for utilization in oxidative environments This work highlights the potential of transition metal doping to alter the electronic structure of MOFs for target-specific catalytic reactions, offering new opportunities for advanced environmental remediation technologies.
通过绿色光催化与高级氧化工艺(AOPs)相结合去除污染物对于高效废水处理至关重要,但受到光捕获能力差和氧化剂活化效率低的限制。本研究通过开发一种共掺入钴的UiO-bpydc金属有机框架(MOF)来应对这些挑战,该框架通过过一硫酸盐(PMS)桥接的配体到金属的电荷转移(LMCT)增强可见光驱动的光催化作用。通过将钴直接络合到UiO-bpydc框架中合成了该MOF,以实现可见光吸收。在PMS存在下,UiO-bpydc(Co)在30分钟内实现了95.8%的洛美沙星(LOM)降解,这归因于带隙变窄(即2.82 eV)、通过钴中心改善的电荷转移以及由于富电子配体导致的污染物亲和力增加。此外,长寿命单线态氧(O,41.8%)的生成被确定为关键的活性物种。理论计算表明,-Co-OOSO桥形成后HOMO-LUMO能隙减小,这促进了载流子分离并改善了污染物与催化剂的相互作用。阐明了中间体的降解途径和毒性演变,而UiO-bpydc(Co)出色的稳定性、可回收性和广泛的污染物适用性证明了其在氧化环境中的应用潜力。这项工作突出了过渡金属掺杂改变MOF电子结构以实现目标特异性催化反应的潜力,为先进的环境修复技术提供了新的机遇。