He Jinrong, Wu Xueqin, Qiao Jie, Xie Xian, Wang Yu, Zhang Hao, Zhang Wei
Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, Changsha, Hunan 410013, China.
Department of Nephrology, The Central Hospital of Shaoyang, Hunan Province 422000, China.
Biochim Biophys Acta Mol Basis Dis. 2025 Aug;1871(6):167895. doi: 10.1016/j.bbadis.2025.167895. Epub 2025 May 7.
Ischemia-reperfusion injury stands as a primary instigator of acute kidney injury (AKI), prominently driven by oxidative stress. Among the critical antioxidant defenses is glutathione peroxidase 3 (GPX3), an enzyme generated by renal tubular epithelial cells. Our prior investigations have unveiled a substantial downregulation of GPX3 in renal tissues gleaned from AKI patients and murine models. This study aims to investigate the role of tubular cell-specific Gpx3 deletion on ischemia-reperfusion injury-induced AKI (IRI-AKI) in a murine model and delineate the potential underlying mechanisms. By generating renal tubular epithelial cell-specific Gpx3 knockout mice and inducing IRI-AKI, we assessed a spectrum of kidney injury indices including renal function, oxidative stress, apoptosis and mitochondrial dynamics. Additionally, we conducted transcriptome sequencing and bioinformatics analyses. The outcomes underscore that the deficiency of GPX3 in tubular cells exacerbates tubular injury, renal dysfunction, oxidative stress, apoptosis, and mitochondrial dynamic disturbances in the context of IRI-AKI. Sequencing and bioinformatics analysis suggest that the Gpx3 deletion predominantly impacts pathways associated with metabolism and inflammation. In conclusion, the tubular cell-specific deficiency of GPX3 exacerbates renal injury by intensifying oxidative stress, fostering mitochondrial impairment, perturbing metabolic processes and fueling inflammation. The targeted restoration of GPX3 in the renal tubular emerges as a potential therapeutic avenue for mitigating IRI-AKI.
缺血再灌注损伤是急性肾损伤(AKI)的主要诱因,主要由氧化应激驱动。关键的抗氧化防御机制之一是谷胱甘肽过氧化物酶3(GPX3),它是一种由肾小管上皮细胞产生的酶。我们之前的研究发现,从AKI患者和小鼠模型收集的肾组织中GPX3显著下调。本研究旨在探讨肾小管细胞特异性Gpx3缺失在小鼠模型中对缺血再灌注损伤诱导的急性肾损伤(IRI-AKI)的作用,并阐明潜在的机制。通过构建肾小管上皮细胞特异性Gpx3基因敲除小鼠并诱导IRI-AKI,我们评估了一系列肾损伤指标,包括肾功能、氧化应激、细胞凋亡和线粒体动力学。此外,我们还进行了转录组测序和生物信息学分析。结果强调,在IRI-AKI背景下,肾小管细胞中GPX3的缺乏会加剧肾小管损伤、肾功能障碍、氧化应激、细胞凋亡和线粒体动态紊乱。测序和生物信息学分析表明,Gpx3缺失主要影响与代谢和炎症相关的通路。总之,肾小管细胞特异性GPX3缺乏通过加剧氧化应激、促进线粒体损伤、扰乱代谢过程和加剧炎症来加重肾损伤。肾小管中GPX3的靶向恢复有望成为减轻IRI-AKI的潜在治疗途径。