Sakthivel Haripriya, Park Sang Mok, Kwon Semin, Kaguiri Eunice, Nyaranga Elizabeth, Leem Jung Woo, Hong Shaun G, Lane Peter J, Were Edwin O, Were Martin C, Kim Young L
Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.
The Charles Draper Stark Laboratory, Cambridge, Massachusetts, USA.
BMJ Open. 2025 May 8;15(5):e097342. doi: 10.1136/bmjopen-2024-097342.
Anaemia during pregnancy is a widespread health burden globally, especially in low- and middle-income countries, posing a serious risk to both maternal and neonatal health. The primary challenge is that anaemia is frequently undetected or is detected too late, worsening pregnancy complications. The gold standard for diagnosing anaemia is a clinical laboratory blood haemoglobin (Hgb) or haematocrit (Hct) test involving a venous blood draw. However, this approach presents several challenges in resource-limited settings regarding accessibility and feasibility. Although non-invasive blood Hgb testing technologies are gaining attention, they remain limited in availability, affordability and practicality. This study aims to develop and validate a mobile health (mHealth) machine learning model to reliably predict blood Hgb and Hct levels in Black African pregnant women using smartphone photos of the conjunctiva.
This is a single-centre, cross-sectional and observational study, leveraging existing antenatal care services for pregnant women aged 15 to 49 years in Kenya. The study involves collecting smartphone photos of the conjunctiva alongside conventional blood Hgb tests. Relevant clinical data related to each participant's anaemia status will also be collected. The photo acquisition protocol will incorporate diverse scenarios to reflect real-world variability. A clinical training dataset will be used to refine a machine learning model designed to predict blood Hgb and Hct levels from smartphone images of the conjunctiva. Using a separate testing dataset, comprehensive analyses will assess its performance by comparing predicted blood Hgb and Hct levels with clinical laboratory and/or finger-prick readings.
This study is approved by the Moi University Institutional Research and Ethics Committee (Reference: IREC/585/2023 and Approval Number: 004514), Kenya's National Commission for Science, Technology, and Innovation (NACOSTI Reference: 491921) and Purdue University's Institutional Review Board (Protocol Number: IRB-2023-1235). Participants will include emancipated or mature minors. In Kenya, pregnant women aged 15 to 18 years are recognised as emancipated or mature minors, allowing them to provide informed consent independently. The study poses minimal risk to participants. Findings and results will be disseminated through submissions to peer-reviewed journals and presentations at the participating institutions, including Moi Teaching and Referral Hospital and Kenya's Ministry of Health. On completion of data collection and modelling, this study will demonstrate how machine learning-driven mHealth technologies can reduce reliance on clinical laboratories and complex equipment, offering accessible and scalable solutions for resource-limited and at-home settings.
孕期贫血是全球范围内广泛存在的健康负担,尤其是在低收入和中等收入国家,对孕产妇和新生儿健康构成严重风险。主要挑战在于贫血常常未被检测到或检测过晚,从而使妊娠并发症恶化。诊断贫血的金标准是临床实验室血液血红蛋白(Hgb)或血细胞比容(Hct)检测,这需要抽取静脉血。然而,这种方法在资源有限的环境中,在可及性和可行性方面存在诸多挑战。尽管非侵入性血液血红蛋白检测技术受到越来越多关注,但它们在可用性、可负担性和实用性方面仍然有限。本研究旨在开发并验证一种移动健康(mHealth)机器学习模型,以利用结膜的智能手机照片可靠地预测非洲黑人孕妇的血液血红蛋白和血细胞比容水平。
这是一项单中心、横断面观察性研究,利用肯尼亚现有的针对15至49岁孕妇的产前护理服务。该研究包括收集结膜的智能手机照片以及传统的血液血红蛋白检测。还将收集与每位参与者贫血状况相关的临床数据。照片采集方案将纳入各种场景,以反映现实世界的变异性。一个临床训练数据集将用于优化一个机器学习模型,该模型旨在根据结膜的智能手机图像预测血液血红蛋白和血细胞比容水平。使用一个单独的测试数据集,通过将预测的血液血红蛋白和血细胞比容水平与临床实验室检测值和/或指尖采血读数进行比较,全面分析将评估其性能。
本研究已获得莫伊大学机构研究与伦理委员会(参考编号:IREC/585/2023,批准号:004514)、肯尼亚国家科学、技术和创新委员会(NACOSTI参考编号:491921)以及普渡大学机构审查委员会(方案编号:IRB - 2023 - 1235)的批准。参与者将包括已获解放的或成熟的未成年人。在肯尼亚,15至18岁的孕妇被视为已获解放的或成熟的未成年人,允许她们独立提供知情同意。该研究对参与者造成的风险极小。研究结果将通过提交给同行评审期刊以及在包括莫伊教学与转诊医院和肯尼亚卫生部在内的参与机构进行汇报来传播。在完成数据收集和建模后,本研究将展示机器学习驱动的移动健康技术如何减少对临床实验室和复杂设备的依赖,为资源有限的环境和家庭环境提供可及且可扩展的解决方案。