Li Zejian, Delmonte Anna, Turkeshi Xhek, Fazio Rosario
The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151, Trieste, Italy.
SISSA, Via Bonomea 265, I-34136, Trieste, Italy.
Nat Commun. 2025 May 9;16(1):4329. doi: 10.1038/s41467-025-59557-w.
Measurement-induced phases exhibit unconventional dynamics as emergent collective phenomena, yet their behavior in tailored interacting systems - crucial for quantum technologies - remains less understood. We develop a systematic toolbox to analyze monitored dynamics in long-range interacting systems, relevant to platforms like trapped ions and Rydberg atoms. Our method extends spin-wave theory to general dynamical generators at the quantum trajectory level, enabling access to a broader class of states than approaches based on density matrices. This allows efficient simulation of large-scale interacting spins and captures nonlinear dynamical features such as entanglement and trajectory correlations. We showcase the versatility of our framework by exploring entanglement phase transitions in a monitored spin system with power-law interactions in one and two dimensions, where the entanglement scaling changes from logarithm to volume law as the interaction range shortens, and by dwelling on how our method mitigates experimental post-selection challenges in detecting monitored quantum phases.
测量诱导相作为涌现的集体现象表现出非常规动力学,然而它们在定制的相互作用系统中的行为——这对量子技术至关重要——仍不太为人所理解。我们开发了一个系统的工具箱来分析长程相互作用系统中的监测动力学,这与诸如捕获离子和里德堡原子等平台相关。我们的方法将自旋波理论扩展到量子轨迹层面的一般动力学生成器,与基于密度矩阵的方法相比,能够访问更广泛的态类。这允许对大规模相互作用自旋进行高效模拟,并捕捉诸如纠缠和轨迹相关性等非线性动力学特征。我们通过探索一维和二维具有幂律相互作用的监测自旋系统中的纠缠相变来展示我们框架的多功能性,其中随着相互作用范围缩短,纠缠标度从对数律变为体积律,并且通过详述我们的方法如何减轻检测监测量子相时的实验后选择挑战。