Lee Gun-Hee, Lee Yunheum, Seo Hyeonyeob, Jo Kyunghyun, Yeo Jinwook, Kim Semin, Bae Jae-Young, Kim Chul, Majidi Carmel, Kang Jiheong, Kang Seung-Kyun, Ryu Seunghwa, Park Seongjun
Medical Research Center, Seoul National University, Seoul, Republic of Korea.
Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan, Republic of Korea.
Nat Commun. 2025 May 9;16(1):4320. doi: 10.1038/s41467-025-59703-4.
Intelligent digital apparel, which integrates electronic functionalities into clothing, represents the future of healthcare and ubiquitous control in wearable devices. Realizing such apparel necessitates developing meter-scale conductive fibers with high toughness, conductivity, stable conductance under deformation, and mechanical durability. In this study, we present a heterostructure printing method capable of producing meter-scale (~50 m) biphasic conductive fibers that meet these criteria. Our approach involves encapsulating deformable liquid metal particles (LMPs) within a functionalized thermoplastic polyurethane matrix. This encapsulation induces in situ assembly of LMPs during fiber formation, creating a heterostructure that seamlessly integrates the matrix's durability with the LMPs' superior electrical performance. Unlike rigid conductive materials, deformable LMPs offer stretchability and toughness with a low gauge factor. Through precise twisting using an engineered annealing machine, multiple fiber strands are transformed into robust, electrically stable meter-scale electrodes. This advancement enhances their practicality in various intelligent digital apparel applications, such as stretchable displays, wearable healthcare systems, and digital controls.
智能数字服装将电子功能集成到衣物中,代表了可穿戴设备中医疗保健和普遍控制的未来发展方向。要实现这种服装,就需要开发出具有高韧性、导电性、在变形下具有稳定电导以及机械耐久性的米级导电纤维。在本研究中,我们提出了一种异质结构印刷方法,该方法能够生产出符合这些标准的米级(约50米)双相导电纤维。我们的方法包括将可变形的液态金属颗粒(LMPs)封装在功能化的热塑性聚氨酯基质中。这种封装在纤维形成过程中诱导LMPs的原位组装,形成一种异质结构,将基质的耐久性与LMPs卓越的电性能无缝结合。与刚性导电材料不同,可变形的LMPs具有低应变系数的拉伸性和韧性。通过使用特制的退火机进行精确捻合,多股纤维被转化为坚固、电性能稳定的米级电极。这一进展提高了它们在各种智能数字服装应用中的实用性,如可拉伸显示器、可穿戴医疗系统和数字控制。