Suppr超能文献

用于光学遥感图像目标检测的轻量级快速区域卷积神经网络

Lightweight faster R-CNN for object detection in optical remote sensing images.

作者信息

Magdy Andrew, Moustafa Marwa S, Ebied Hala M, Tolba Mohamed F

机构信息

Department of Scientific Computing, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt.

Department of Image Processing and Its Application, National Authority for Remote Sensing and Space Sciences (NARSS), Cairo, Egypt.

出版信息

Sci Rep. 2025 May 9;15(1):16163. doi: 10.1038/s41598-025-99242-y.

Abstract

Various applications in remote sensing rely on object detection approaches, such as urban detection, precision farming, and disaster prediction. Faster RCNN has gained popularity for its performance but comes with significant computational and storage demands. Model compression techniques like pruning and quantization are frequently employed to mitigate these challenges. This paper introduces a novel bi-stage compression approach to create a lightweight Faster R-CNN for satellite images with minimal performance degradation. The proposed approach employs two distinct phases: aware training and post-training compression. First, aware training employs mixed-precision FP16 computation, which enhances training speed by a factor of 1.5 to 5.5 while preserving model accuracy and optimizing memory efficiency. Second, post-training compression applies unstructured weight pruning to eliminate redundant parameters, followed by dynamic quantization to reduce precision, thereby minimizing the model size at runtime and computational load. The proposed approach was assessed on the NWPU VHR-10 and Ship datasets. The results demonstrate an average 25.6% reduction in model size and a 56.6% reduction in parameters while maintaining the mean Average Precision (mAP).

摘要

遥感中的各种应用都依赖于目标检测方法,如城市检测、精准农业和灾害预测。Faster RCNN因其性能而受到欢迎,但它对计算和存储有很高的要求。诸如剪枝和量化等模型压缩技术经常被用来应对这些挑战。本文介绍了一种新颖的两阶段压缩方法,以创建一个用于卫星图像的轻量级Faster R-CNN,同时性能下降最小。所提出的方法采用两个不同的阶段:感知训练和训练后压缩。首先,感知训练采用混合精度FP16计算,在保持模型准确性和优化内存效率的同时,将训练速度提高了1.5到5.5倍。其次,训练后压缩应用非结构化权重剪枝来消除冗余参数,然后进行动态量化以降低精度,从而在运行时最小化模型大小和计算负载。所提出的方法在NWPU VHR-10和船舶数据集上进行了评估。结果表明,在保持平均精度均值(mAP)的同时,模型大小平均减少了25.6%,参数减少了56.6%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4190/12064737/50f36d6f3f40/41598_2025_99242_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验