Suppr超能文献

YOLO-Faster:一种基于AMFFN的高效遥感目标检测方法。

YOLO-Faster: An efficient remote sensing object detection method based on AMFFN.

作者信息

Tong Yicheng, Yue Guan, Fan Longfei, Lyu Guosen, Zhu Deya, Liu Yan, Meng Boyuan, Liu Shu, Mu Xiaokai, Tian Congling

机构信息

R&D Department 4, Hangzhou Zhiyuan Research Institute Co.,Ltd, Hangzhou, China.

Polytechnic Institute Zhejiang University, Hangzhou, China.

出版信息

Sci Prog. 2024 Oct-Dec;107(4):368504241280765. doi: 10.1177/00368504241280765.

Abstract

As a pivotal task within computer vision, object detection finds application across a diverse spectrum of industrial scenarios. The advent of deep learning technologies has significantly elevated the accuracy of object detectors designed for general-purpose applications. Nevertheless, in contrast to conventional terrestrial environments, remote sensing object detection scenarios pose formidable challenges, including intricate and diverse backgrounds, fluctuating object scales, and pronounced interference from background noise, rendering remote sensing object detection an enduringly demanding task. In addition, despite the superior detection performance of deep learning-based object detection networks compared to traditional counterparts, their substantial parameter and computational demands curtail their feasibility for deployment on mobile devices equipped with low-power processors. In response to the aforementioned challenges, this paper introduces an enhanced lightweight remote sensing object detection network, denoted as YOLO-Faster, built upon the foundation of YOLOv5. Firstly, the lightweight design and inference speed of the object detection network is augmented by incorporating the lightweight network as the foundational network within YOLOv5, satisfying the demand for real-time detection on mobile devices. Moreover, to tackle the issue of detecting objects of different scales in large and complex backgrounds, an adaptive multiscale feature fusion network is introduced, which dynamically adjusts the large receptive field to capture dependencies among objects of different scales, enabling better modeling of object detection scenarios in remote sensing scenes. At last, the robustness of the object detection network under background noise is enhanced through incorporating a decoupled detection head that separates the classification and regression processes of the detection network. The results obtained from the public remote sensing object detection dataset DOTA show that the proposed method has a mean average precision of 71.4% and a detection speed of 38 frames per second.

摘要

作为计算机视觉中的一项关键任务,目标检测在各种工业场景中都有应用。深度学习技术的出现显著提高了为通用应用设计的目标检测器的准确性。然而,与传统的地面环境相比,遥感目标检测场景带来了巨大挑战,包括复杂多样的背景、波动的目标尺度以及背景噪声的显著干扰,这使得遥感目标检测一直是一项极具挑战性的任务。此外,尽管基于深度学习的目标检测网络与传统方法相比具有卓越的检测性能,但它们对参数和计算的大量需求限制了其在配备低功率处理器的移动设备上部署的可行性。针对上述挑战,本文介绍了一种基于YOLOv5构建的增强型轻量级遥感目标检测网络,称为YOLO-Faster。首先,通过将轻量级网络作为YOLOv5中的基础网络,增强了目标检测网络的轻量级设计和推理速度,满足了移动设备上实时检测的需求。此外,为了解决在大而复杂的背景中检测不同尺度目标的问题,引入了一种自适应多尺度特征融合网络,该网络动态调整大感受野以捕捉不同尺度目标之间的依赖关系,从而能够更好地对遥感场景中的目标检测场景进行建模。最后,通过引入一个解耦检测头,将检测网络的分类和回归过程分开,增强了目标检测网络在背景噪声下的鲁棒性。从公共遥感目标检测数据集DOTA获得的结果表明,该方法的平均精度为71.4%,检测速度为每秒38帧。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/888b/11475215/f2080d3f7f6f/10.1177_00368504241280765-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验