Suppr超能文献

生物矿物/血管内皮生长因子功能化纤维增强的3D打印甲基丙烯酰化明胶水凝胶,通过调节成骨作用和血管生成促进骨再生。

Biomineral/VEGF-functionalized fiber - enhanced 3D printed GelMA hydrogel to facilitate bone regeneration through osteogenesis and angiogenesis modulation.

作者信息

Liu Xiaokang, Wang Baoxiu, Ma Jinghong, Hu Haoran

机构信息

State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.

School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China.

出版信息

Int J Biol Macromol. 2025 Jun;312:143991. doi: 10.1016/j.ijbiomac.2025.143991. Epub 2025 May 9.

Abstract

Three-dimensionally (3D) printed hydrogels face significant challenges in promoting osteogenesis and angiogenesis for bone tissue engineering. In this study, we designed a bioactive 3D-printed hydrogel to enhance bone regeneration through osteogenesis and angiogenesis modulation. An enzymatic mineralization strategy was proposed to develop biomineral/vascular endothelial growth factor (VEGF)-functionalized poly (L-lactic acid) (PLLA) micro-nanofibers (m-PLLA@VEGF). These micro-nanofibers were incorporated into gelatin methacryloyl (GelMA) bioink to develop GelMA/m-PLLA@VEGF hydrogel scaffold. The m-PLLA@VEGF micro-nanofibers provided multiple benefits. Specifically, they improved the rheological properties of the GelMA bioink and mechanical properties of the hydrogel, and promoted osteogenesis and angiogenesis of the hydrogel scaffold. The resulting GelMA/m-PLLA@VEGF hydrogel scaffold effectively promoted osteogenesis by enhancing osteoblast-related expression and mineralized matrix deposition, aided by the sustained release of biominerals (Ca and P ions). It also significantly enhanced endothelial cell proliferation, scratch wound healing, and the expression of angiogenesis-related genes. When implanted in a critical-sized rat calvarial bone defect model, the composite hydrogel scaffold facilitated bone regeneration through the synergistic modulation of angiogenesis and osteogenesis. Overall, this work presented an innovative approach for developing functionalized micro-nanofibers, with the enhanced bioactive hydrogel showing significant potential for bone regeneration.

摘要

三维(3D)打印水凝胶在促进骨组织工程中的骨生成和血管生成方面面临重大挑战。在本研究中,我们设计了一种生物活性3D打印水凝胶,通过调节骨生成和血管生成来促进骨再生。我们提出了一种酶促矿化策略来制备生物矿化/血管内皮生长因子(VEGF)功能化的聚(L-乳酸)(PLLA)微纳米纤维(m-PLLA@VEGF)。将这些微纳米纤维掺入甲基丙烯酰化明胶(GelMA)生物墨水中,以制备GelMA/m-PLLA@VEGF水凝胶支架。m-PLLA@VEGF微纳米纤维具有多种优势。具体而言,它们改善了GelMA生物墨水的流变学性能和水凝胶的力学性能,并促进了水凝胶支架的骨生成和血管生成。所得的GelMA/m-PLLA@VEGF水凝胶支架通过增强成骨细胞相关表达和矿化基质沉积,在生物矿物质(钙和磷离子)的持续释放辅助下,有效地促进了骨生成。它还显著增强了内皮细胞增殖、划痕伤口愈合以及血管生成相关基因的表达。当植入大鼠颅骨临界尺寸骨缺损模型中时,复合水凝胶支架通过血管生成和骨生成的协同调节促进了骨再生。总体而言,这项工作提出了一种开发功能化微纳米纤维的创新方法,这种增强的生物活性水凝胶在骨再生方面显示出巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验