Suppr超能文献

利用牛奶红外光谱数据建立荷斯坦奶牛成熟乳中免疫球蛋白A、免疫球蛋白G和免疫球蛋白M浓度的预测方程。

Development of prediction equations for immunoglobulin A, immunoglobulin G, and immunoglobulin M concentrations in mature milk from Holstein cows using milk infrared spectral data.

作者信息

Satake Yuri, Katsura Teppei, Zhuang Tao, Urakawa Megumi, Mineshima Yugo, Baba Toshimi, Yoshida Gaku, Kitazawa Haruki, Shirakawa Hitoshi, Nakamura Takehiko, Nochi Tomonori, Sakai Yoshifumi, Satoh Masahiro, Haga Satoshi, Aso Hisashi, Uemoto Yoshinobu

机构信息

Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan 980-8572.

Holstein Cattle Association of Japan, Hokkaido Branch, Sapporo, Hokkaido, Japan 001-8555.

出版信息

J Dairy Sci. 2025 Jul;108(7):7354-7369. doi: 10.3168/jds.2024-25991. Epub 2025 May 8.

Abstract

Immunoglobulins in ruminant mammary secretions play a central role in active immune protection of the mammary gland against infections. Ig are present in both colostrum and milk from cows, and interest in routinely quantifying the Ig content in milk for herd management and genetic improvement of disease resistance is increasing. Therefore, the objective of this study was to develop a prediction equation for Ig (IgA, IgG, and IgM) concentrations in milk from Holstein cows using milk Fourier-transform infrared (FTIR) spectral data and to evaluate the practical feasibility of the predicted Ig concentration in milk. First, we developed prediction equations for Ig concentrations in milk using 1,633 milk samples comprising both Ig concentrations in milk and milk FTIR spectral data. We then evaluated the predictive accuracy of the developed equations using 3 different factors: derivative preprocessing, spectral wavenumber ranges, and regression models. Our results demonstrated that the prediction equations based on the partial least squares regression and 4 machine learning regression models exhibited the highest predictive accuracy for all traits under the conditions of nonderivative preprocessing and spectral wavenumber range related to milk quality traits. Their predictive accuracies were moderate, with the R ranging from 0.41 to 0.42, 0.50 to 0.52, and 0.38 to 0.39 for IgA, IgG, and IgM, respectively. Second, we evaluated the practical applicability of the predicted Ig concentration by comparing the trends of both the observed and predicted Ig concentrations with respect to several environmental effects. A linear model was applied using the observed and predicted Ig concentrations, and the LSM of the levels for each environmental effect (lactation stage, SCS, parity, and milk yield) was estimated. Our results showed that the estimated environmental effects of the observed and predicted values showed similar trends for all traits. These results indicate that it is possible to estimate environmental effects using the predicted values obtained via the prediction equation with moderate accuracy. Although the predictive accuracy obtained here may be effective for estimating effects at the herd level, further improvement in predictive accuracy is necessary for estimating effects at the cow level.

摘要

反刍动物乳腺分泌物中的免疫球蛋白在乳腺抗感染的主动免疫保护中发挥着核心作用。免疫球蛋白存在于奶牛的初乳和乳汁中,并且对于为畜群管理和抗病性的遗传改良而常规定量乳汁中的免疫球蛋白含量的兴趣正在增加。因此,本研究的目的是利用乳汁傅里叶变换红外(FTIR)光谱数据建立荷斯坦奶牛乳汁中免疫球蛋白(IgA、IgG和IgM)浓度的预测方程,并评估预测的乳汁免疫球蛋白浓度的实际可行性。首先,我们利用1633份包含乳汁免疫球蛋白浓度和乳汁FTIR光谱数据的乳汁样本,建立了乳汁中免疫球蛋白浓度的预测方程。然后,我们使用3个不同因素评估所建立方程的预测准确性:导数预处理、光谱波数范围和回归模型。我们的结果表明,在与乳汁质量性状相关的非导数预处理和光谱波数范围条件下,基于偏最小二乘回归和4种机器学习回归模型的预测方程对所有性状均表现出最高的预测准确性。它们的预测准确性中等,IgA、IgG和IgM的决定系数(R)分别为0.41至0.42、0.50至0.52和0.38至0.39。其次,我们通过比较观察到的和预测的免疫球蛋白浓度相对于几种环境效应的趋势,评估了预测的免疫球蛋白浓度的实际适用性。使用观察到的和预测的免疫球蛋白浓度应用线性模型,并估计每种环境效应(泌乳阶段、体细胞评分、胎次和产奶量)水平的最小二乘均值(LSM)。我们的结果表明,观察值和预测值的估计环境效应在所有性状上均呈现相似趋势。这些结果表明,利用通过预测方程获得的预测值以中等准确性估计环境效应是可能的。尽管此处获得的预测准确性对于估计畜群水平的效应可能是有效的,但为了估计奶牛个体水平的效应,预测准确性仍需进一步提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验