文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

介孔金纳米球负载铂纳米团簇作为用于近红外二区热疗癌症治疗的强大活性氧和氧纳米发生器

Mesoporous Gold Nanospheres Confined Platinum Nanoclusters as Robust ROS and Oxygen Nanogenerators for NIR-II Hyperthermia Cancer Therapy.

作者信息

Cun Fei, Chen Jie, Li Hanxue, Kou Yufang, Wang Meiyan, Li Xiaomin, Chen Hui, Kong Jilie

机构信息

Department of Chemistry, Fudan University, Shanghai, 200438, China.

411 Hospital, School of Medicine, Shanghai University, Shanghai, 200444, China.

出版信息

Adv Sci (Weinh). 2025 Jul;12(28):e2502688. doi: 10.1002/advs.202502688. Epub 2025 May 11.


DOI:10.1002/advs.202502688
PMID:40349182
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12302635/
Abstract

While massive studies are focused on platinum (Pt)-based nanozyme for antitumor therapies, their therapeutic efficiency is deficient due to the weak catalytic activity in the highly complex tumor microenvironment. Herein, mesoporous gold nanospheres confined platinum nanoclusters (MGNSs@Pt) as robust hydroxyl radical and oxygen nanogenerators are achieved for multimodal therapies. Benefiting from the confinement effect of the mesopores in the MGNSs, the Pt nanoclusters (Pt NCs) demonstrate enhanced stability and catalytic activity, with a catalytic constant (K) of 1.42 × 10 s, which is 2 and 5 orders magnitude higher than K values of Pt-decorated non-porous gold nanoparticles and pure Pt NCs respectively. Density functional theory (DFT) calculations reveal the proper interaction of intermediates contributes to the ultra-high catalytic activity of MGNSs@Pt. Meanwhile, owing to the local surface plasmon resonance (LSPR) effect in the second near-infrared (NIR-II) bio-window of MGNSs, the nanozymes exhibited high photothermal conversion efficiency up to 43.4%, which enhanced the nanocatalytic damage on cancer cells. This process can induce robust oxidative stress and oxygenation within the tumor, thereby activating the apoptosis pathway for tumor eradication by mitochondrial dysfunction, cell membrane disruption, HIF-1α downregulation as well as caspase 3 activation, which pave the way for multimodal and effective cancer treatment.

摘要

尽管大量研究聚焦于基于铂(Pt)的纳米酶用于抗肿瘤治疗,但由于其在高度复杂的肿瘤微环境中催化活性较弱,治疗效率低下。在此,我们制备了介孔金纳米球限域铂纳米簇(MGNSs@Pt)作为强大的羟基自由基和氧纳米发生器用于多模态治疗。得益于MGNSs中介孔的限域效应,铂纳米簇(Pt NCs)表现出增强的稳定性和催化活性,催化常数(K)为1.42×10 s,分别比铂修饰的无孔金纳米颗粒和纯Pt NCs的K值高2个和5个数量级。密度泛函理论(DFT)计算表明中间体之间适当的相互作用有助于MGNSs@Pt的超高催化活性。同时,由于MGNSs在第二近红外(NIR-II)生物窗口中的局域表面等离子体共振(LSPR)效应,纳米酶表现出高达43.4%的高光热转换效率,增强了对癌细胞的纳米催化损伤。这一过程可在肿瘤内诱导强烈的氧化应激和氧合作用,从而通过线粒体功能障碍、细胞膜破坏、HIF-1α下调以及半胱天冬酶3激活激活肿瘤根除的凋亡途径,为多模态有效癌症治疗铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f931/12302635/fbfa81f97f4f/ADVS-12-2502688-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f931/12302635/e6a8e9763e1f/ADVS-12-2502688-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f931/12302635/27f2b73c3904/ADVS-12-2502688-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f931/12302635/cfc88a3209a8/ADVS-12-2502688-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f931/12302635/12c3413f4e34/ADVS-12-2502688-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f931/12302635/fbfa81f97f4f/ADVS-12-2502688-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f931/12302635/e6a8e9763e1f/ADVS-12-2502688-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f931/12302635/27f2b73c3904/ADVS-12-2502688-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f931/12302635/cfc88a3209a8/ADVS-12-2502688-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f931/12302635/12c3413f4e34/ADVS-12-2502688-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f931/12302635/fbfa81f97f4f/ADVS-12-2502688-g006.jpg

相似文献

[1]
Mesoporous Gold Nanospheres Confined Platinum Nanoclusters as Robust ROS and Oxygen Nanogenerators for NIR-II Hyperthermia Cancer Therapy.

Adv Sci (Weinh). 2025-7

[2]
Iron oxide-gold core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance.

J Cancer Res Clin Oncol. 2019-3-7

[3]
A carbonic anhydrase-targeted NIR-II fluorescent cisplatin theranostic nanoparticle for combined therapy of pancreatic tumors.

Biomaterials. 2024-3

[4]
Thermoresponsive, Size-Tunable Hybrid Nanomicelles to Alleviate Tumor Hypoxia and Enhance Chemo-Photothermal Synergy Therapy of Cancer.

Biomacromolecules. 2025-7-14

[5]
Mesoporous silica nanoparticles loaded Au nanodots: a self-amplifying immunotherapeutic depot for photothermal immunotherapy.

Front Immunol. 2025-6-18

[6]
A copper-platinum nanoplatform for synergistic photothermal and chemodynamic tumor therapy ROS outburst and GSH exhaustion.

J Mater Chem B. 2024-1-17

[7]
Innovative approaches for cancer treatment: graphene quantum dots for photodynamic and photothermal therapies.

J Mater Chem B. 2024-5-8

[8]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[9]
Near-infrared activation of upconversion platforms for non-redox-dependent release of Pt(II).

J Inorg Biochem. 2025-10

[10]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.

Health Technol Assess. 2001

本文引用的文献

[1]
Protective effects of Pt-N-C single-atom nanozymes against myocardial ischemia-reperfusion injury.

Nat Commun. 2024-2-23

[2]
Ultrasmall metal alloy nanozymes mimicking neutrophil enzymatic cascades for tumor catalytic therapy.

Nat Commun. 2024-2-22

[3]
Tuning oxidant and antioxidant activities of ceria by anchoring copper single-site for antibacterial application.

Nat Commun. 2024-2-3

[4]
One-Pot Synthesis of Tumor-Microenvironment Responsive Degradable Nanoflower-Medicine for Multimodal Cancer Therapy with Reinvigorating Antitumor Immunity.

Adv Healthc Mater. 2023-12

[5]
Nanohole-Array Induced Metallic Molybdenum Selenide Nanozyme for Photoenhanced Tumor-Specific Therapy.

ACS Nano. 2023-9-26

[6]
Deciphering the Mechanisms of Photo-Enhanced Catalytic Activities in Plasmonic Pd-Au Heteromeric Nanozymes for Colorimetric Analysis.

Small. 2024-1

[7]
Mimicking Antioxidases and Hyaluronan Synthase: A Zwitterionic Nanozyme for Photothermal Therapy of Osteoarthritis.

Adv Mater. 2023-11

[8]
2D Piezoelectric BiVO Artificial Nanozyme with Adjustable Vanadium Vacancy for Ultrasound Enhanced Piezoelectric/Sonodynamic Therapy.

Small. 2023-9

[9]
Piezoelectric Metal-Organic Frameworks Based Sonosensitizer for Enhanced Nanozyme Catalytic and Sonodynamic Therapies.

ACS Nano. 2023-4-25

[10]
Chiral Skeletons of Mesoporous Silica Nanospheres to Mitigate Alzheimer's β-Amyloid Aggregation.

J Am Chem Soc. 2023-4-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索