Suppr超能文献

光交联水凝胶中连续刚度梯度诱导间充质基质细胞软骨分化

Mesenchymal Stromal Cell Chondrogenic Differentiation Induced by Continuous Stiffness Gradient in Photocrosslinkable Hydrogels.

作者信息

Mierswa Sabrina C, Wheeler Erika E, Apsey Ayla N, Jeon Oju, Alsberg Eben, Leach J Kent

机构信息

Department of Orthopaedic Surgery, UC Davis Health, Sacramento, California, USA.

Department of Biomedical Engineering, University of California, Davis, California, USA.

出版信息

J Biomed Mater Res A. 2025 May;113(5):e37928. doi: 10.1002/jbm.a.37928.

Abstract

Chondrogenic differentiation of stem and progenitor cells is dependent on the biophysical properties of the surrounding matrix. Current biomaterials-based approaches for chondrogenesis are limited to discrete platforms, slowing our ability to interrogate the role of mechanical cues such as substrate stiffness and other signals. Thus, novel platforms must incorporate a range of biophysical properties within a single construct to effectively assess changes in cell response. We encapsulated human mesenchymal stromal cells (MSCs) within biodegradable, photocurable oxidized, and methacrylated alginate (OMA). Cell-laden hydrogels were crosslinked when exposed to light through a grayscale photomask to form substrates with a continuous stiffness gradient. We also tested the influence of the adhesive ligand Arg-Gly-Asp (RGD) on chondrogenic differentiation. Compared to unmodified gels possessing uniform biophysical properties, RGD-modified OMA hydrogels with the same modulus promoted chondrogenic differentiation of MSCs as evidenced by gene expression, matrix deposition, and histological analysis. MSCs entrapped in OMA hydrogels exhibiting a biologically relevant stiffness gradient (2-13 kPa over 8 mm) demonstrated increased chondrogenic differentiation with increases in stiffness. MSC chondrogenic differentiation was dependent upon the ability to mechanosense the modulus of the surrounding matrix, confirmed by the addition of Latrunculin A (LatA), a soluble inhibitor of actin polymerization. These findings validate a methodology for customizing hydrogel platforms for chondrogenic differentiation and identifying the interplay of key variables to instruct cell function.

摘要

干细胞和祖细胞的软骨形成分化取决于周围基质的生物物理特性。当前基于生物材料的软骨形成方法局限于离散平台,这减缓了我们探究诸如底物硬度等机械信号及其他信号作用的能力。因此,新型平台必须在单一构建物中纳入一系列生物物理特性,以有效评估细胞反应的变化。我们将人间充质基质细胞(MSCs)封装在可生物降解、可光固化的氧化甲基丙烯酸化海藻酸盐(OMA)中。当通过灰度光掩模暴露于光下时,载有细胞的水凝胶交联形成具有连续刚度梯度的底物。我们还测试了黏附配体精氨酸 - 甘氨酸 - 天冬氨酸(RGD)对软骨形成分化的影响。与具有均匀生物物理特性的未修饰水凝胶相比,具有相同模量的RGD修饰的OMA水凝胶促进了MSCs的软骨形成分化,这通过基因表达、基质沉积和组织学分析得以证明。包裹在OMA水凝胶中的MSCs表现出生物学相关的刚度梯度(在8毫米范围内为2 - 13kPa),随着刚度增加,软骨形成分化增加。通过添加肌动蛋白聚合的可溶性抑制剂Latrunculin A(LatA)证实,MSC软骨形成分化取决于对周围基质模量进行机械感知的能力。这些发现验证了一种定制用于软骨形成分化的水凝胶平台并确定指导细胞功能的关键变量之间相互作用的方法。

相似文献

2
Photofunctionalization of alginate hydrogels to promote adhesion and proliferation of human mesenchymal stem cells.
Tissue Eng Part A. 2013 Jun;19(11-12):1424-32. doi: 10.1089/ten.TEA.2012.0581. Epub 2013 Feb 26.
5
Interaction-tailored cell aggregates in alginate hydrogels for enhanced chondrogenic differentiation.
J Biomed Mater Res A. 2017 Jan;105(1):42-50. doi: 10.1002/jbm.a.35865. Epub 2016 Aug 23.
6
Independent control of matrix adhesiveness and stiffness within a 3D self-assembling peptide hydrogel.
Acta Biomater. 2018 Apr 1;70:110-119. doi: 10.1016/j.actbio.2018.01.031. Epub 2018 Feb 2.
8
Evaluation of alginate modification effect on cell-matrix interaction, mechanotransduction and chondrogenesis of encapsulated MSCs.
Cell Tissue Res. 2020 Aug;381(2):255-272. doi: 10.1007/s00441-020-03216-7. Epub 2020 May 13.
10
Phenolated alginate-collagen hydrogel induced chondrogenic capacity of human amniotic mesenchymal stem cells.
J Biomater Appl. 2021 Nov;36(5):789-802. doi: 10.1177/08853282211021692. Epub 2021 Jun 1.

本文引用的文献

1
Decellularized Extracellular Matrix Improves Mesenchymal Stromal Cell Spheroid Response to Chondrogenic Stimuli.
Tissue Eng Part A. 2025 Feb;31(3-4):139-151. doi: 10.1089/ten.tea.2024.0267. Epub 2024 Nov 18.
2
Hydrogels with stiffness-degradation spatial patterns control anisotropic 3D cell response.
Biomater Adv. 2023 Aug;151:213423. doi: 10.1016/j.bioadv.2023.213423. Epub 2023 Apr 25.
3
Recent progress in the manipulation of biochemical and biophysical cues for engineering functional tissues.
Bioeng Transl Med. 2022 Aug 5;8(2):e10383. doi: 10.1002/btm2.10383. eCollection 2023 Mar.
4
Multisized Photoannealable Microgels Regulate Cell Spreading, Aggregation, and Macrophage Phenotype through Microporous Void Space.
Adv Healthc Mater. 2023 May;12(13):e2202239. doi: 10.1002/adhm.202202239. Epub 2023 Feb 8.
5
Soft substrates direct stem cell differentiation into the chondrogenic lineage without the use of growth factors.
J Tissue Eng. 2022 Sep 29;13:20417314221122121. doi: 10.1177/20417314221122121. eCollection 2022 Jan-Dec.
6
An overview of substrate stiffness guided cellular response and its applications in tissue regeneration.
Bioact Mater. 2021 Dec 25;15:82-102. doi: 10.1016/j.bioactmat.2021.12.005. eCollection 2022 Sep.
8
4D biofabrication via instantly generated graded hydrogel scaffolds.
Bioact Mater. 2021 Jun 5;7:324-332. doi: 10.1016/j.bioactmat.2021.05.021. eCollection 2022 Jan.
9
Direct Gradient Photolithography of Photodegradable Hydrogels with Patterned Stiffness Control with Submicrometer Resolution.
ACS Biomater Sci Eng. 2016 Aug 8;2(8):1309-1318. doi: 10.1021/acsbiomaterials.6b00237. Epub 2016 Jul 8.
10
Gradient Hydrogels for Optimizing Niche Cues to Enhance Cell-Based Cartilage Regeneration.
Tissue Eng Part A. 2021 Jul;27(13-14):929-939. doi: 10.1089/ten.TEA.2020.0158. Epub 2020 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验