Mierswa Sabrina C, Wheeler Erika E, Apsey Ayla N, Jeon Oju, Alsberg Eben, Leach J Kent
Department of Orthopaedic Surgery, UC Davis Health, Sacramento, California, USA.
Department of Biomedical Engineering, University of California, Davis, California, USA.
J Biomed Mater Res A. 2025 May;113(5):e37928. doi: 10.1002/jbm.a.37928.
Chondrogenic differentiation of stem and progenitor cells is dependent on the biophysical properties of the surrounding matrix. Current biomaterials-based approaches for chondrogenesis are limited to discrete platforms, slowing our ability to interrogate the role of mechanical cues such as substrate stiffness and other signals. Thus, novel platforms must incorporate a range of biophysical properties within a single construct to effectively assess changes in cell response. We encapsulated human mesenchymal stromal cells (MSCs) within biodegradable, photocurable oxidized, and methacrylated alginate (OMA). Cell-laden hydrogels were crosslinked when exposed to light through a grayscale photomask to form substrates with a continuous stiffness gradient. We also tested the influence of the adhesive ligand Arg-Gly-Asp (RGD) on chondrogenic differentiation. Compared to unmodified gels possessing uniform biophysical properties, RGD-modified OMA hydrogels with the same modulus promoted chondrogenic differentiation of MSCs as evidenced by gene expression, matrix deposition, and histological analysis. MSCs entrapped in OMA hydrogels exhibiting a biologically relevant stiffness gradient (2-13 kPa over 8 mm) demonstrated increased chondrogenic differentiation with increases in stiffness. MSC chondrogenic differentiation was dependent upon the ability to mechanosense the modulus of the surrounding matrix, confirmed by the addition of Latrunculin A (LatA), a soluble inhibitor of actin polymerization. These findings validate a methodology for customizing hydrogel platforms for chondrogenic differentiation and identifying the interplay of key variables to instruct cell function.
干细胞和祖细胞的软骨形成分化取决于周围基质的生物物理特性。当前基于生物材料的软骨形成方法局限于离散平台,这减缓了我们探究诸如底物硬度等机械信号及其他信号作用的能力。因此,新型平台必须在单一构建物中纳入一系列生物物理特性,以有效评估细胞反应的变化。我们将人间充质基质细胞(MSCs)封装在可生物降解、可光固化的氧化甲基丙烯酸化海藻酸盐(OMA)中。当通过灰度光掩模暴露于光下时,载有细胞的水凝胶交联形成具有连续刚度梯度的底物。我们还测试了黏附配体精氨酸 - 甘氨酸 - 天冬氨酸(RGD)对软骨形成分化的影响。与具有均匀生物物理特性的未修饰水凝胶相比,具有相同模量的RGD修饰的OMA水凝胶促进了MSCs的软骨形成分化,这通过基因表达、基质沉积和组织学分析得以证明。包裹在OMA水凝胶中的MSCs表现出生物学相关的刚度梯度(在8毫米范围内为2 - 13kPa),随着刚度增加,软骨形成分化增加。通过添加肌动蛋白聚合的可溶性抑制剂Latrunculin A(LatA)证实,MSC软骨形成分化取决于对周围基质模量进行机械感知的能力。这些发现验证了一种定制用于软骨形成分化的水凝胶平台并确定指导细胞功能的关键变量之间相互作用的方法。