Suppr超能文献

六种新型噬菌体:基因组见解与治疗潜力

Six Novel Phages: Genomic Insights and Therapeutic Potential.

作者信息

Rimon Amit, Yerushalmy Ortal, Belin Jonathan, Alkalay-Oren Sivan, Gavish Lilach, Coppenhagen-Glazer Shunit, Hazan Ronen

机构信息

Faculty of Dental Medicine, Institute of Biomedical and Oral Research (IBOR), The Hebrew University of Jerusalem, Jerusalem, Israel.

Tzameret, The Military Track of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.

出版信息

Phage (New Rochelle). 2025 Mar 17;6(1):32-40. doi: 10.1089/phage.2024.0037. eCollection 2025 Mar.

Abstract

INTRODUCTION

is an opportunistic pathogen that causes health care-associated infections. The rise of antibiotic-resistant bacterial strains necessitates alternative treatment strategies, with bacteriophage therapy being a promising approach.

METHODS

Six bacteriophages were isolated from sewage samples. Phage isolation involved centrifugation, filtration, and plaque assays. The morphology of each sample was examined using transmission electron microscopy (TEM). Genomic DNA was sequenced and compared among the isolates. The phages' lytic activities were assessed using growth curve analysis.

RESULTS

The phages displayed distinct genomic characteristics, grouping into three genomic clusters. No known virulence or antibiotic resistance genes were detected, indicating their safety for therapeutic use. Taxonomic analysis identified the phages as belonging to the genera , , , and a novel genus. TEM analysis revealed their diverse morphologies. Temperate phages showed less effective lytic activities.

CONCLUSION

Several of the isolated bacteriophages show potential as candidates for phage therapy research and could be effective against infections.

摘要

引言

是一种引起医疗保健相关感染的机会致病菌。抗生素耐药菌株的增加使得替代治疗策略成为必要,噬菌体疗法是一种有前景的方法。

方法

从污水样本中分离出六种噬菌体。噬菌体分离包括离心、过滤和噬菌斑测定。使用透射电子显微镜(TEM)检查每个样本的形态。对分离株的基因组DNA进行测序并比较。使用生长曲线分析评估噬菌体的裂解活性。

结果

噬菌体表现出不同的基因组特征,分为三个基因组簇。未检测到已知的毒力或抗生素抗性基因,表明它们用于治疗是安全的。分类学分析确定这些噬菌体属于属、属、属和一个新属。TEM分析揭示了它们多样的形态。温和噬菌体的裂解活性较低。

结论

几种分离出的噬菌体显示出作为噬菌体疗法研究候选物的潜力,并且可能对感染有效。

相似文献

1
Six Novel Phages: Genomic Insights and Therapeutic Potential.
Phage (New Rochelle). 2025 Mar 17;6(1):32-40. doi: 10.1089/phage.2024.0037. eCollection 2025 Mar.
2
Isolation and Characterization of Three Lytic Bacteriophages to Overcome Multidrug-, Extensive Drug-, and Pandrug-Resistant .
Phage (New Rochelle). 2024 Dec 18;5(4):230-240. doi: 10.1089/phage.2021.0018. eCollection 2024 Dec.
3
Physicochemical, genomic, and phenotypic characterization of phage BME3.
Microbiol Spectr. 2025 Jul;13(7):e0130124. doi: 10.1128/spectrum.01301-24. Epub 2025 May 22.
4
Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis.
Cochrane Database Syst Rev. 2017 Apr 25;4(4):CD004197. doi: 10.1002/14651858.CD004197.pub5.
6
Phage steering in the presence of a competing bacterial pathogen.
Microbiol Spectr. 2025 Jul;13(7):e0288224. doi: 10.1128/spectrum.02882-24. Epub 2025 Jun 10.
7
Diversity and Role of Prophages in : Resistance Genes and Bacterial Interactions.
Genes (Basel). 2025 May 29;16(6):656. doi: 10.3390/genes16060656.
8
and comparative analysis of 79 clinical isolates.
Microbiol Spectr. 2025 Jul;13(7):e0284924. doi: 10.1128/spectrum.02849-24. Epub 2025 May 16.
9
vB_PaeP_PZH3, a novel bacteriophage for the treatment of MDR Pseudomonas aeruginosa in a mouse wound infection model.
J Glob Antimicrob Resist. 2025 Jun 28;44:197-206. doi: 10.1016/j.jgar.2025.06.019.
10
The virulent bacteriophage Henu8 as an antimicrobial synergist against .
Microbiol Spectr. 2025 Jul;13(7):e0163324. doi: 10.1128/spectrum.01633-24. Epub 2025 May 16.

引用本文的文献

1
Pulsed Blue Light and Phage Therapy: A Novel Synergistic Bactericide.
Antibiotics (Basel). 2025 May 9;14(5):481. doi: 10.3390/antibiotics14050481.

本文引用的文献

1
Successful phage-antibiotic therapy of implant-associated infection in a Siamese cat.
Vet Q. 2024 Dec;44(1):1-9. doi: 10.1080/01652176.2024.2350661. Epub 2024 May 10.
2
Characterization of a new Queuovirinae bacteriophage.
Microbiol Spectr. 2024 Mar 5;12(3):e0371923. doi: 10.1128/spectrum.03719-23. Epub 2024 Feb 12.
3
Bacteriophage tRNA-dependent lysogeny: requirement of phage-encoded tRNA genes for establishment of lysogeny.
mBio. 2024 Feb 14;15(2):e0326023. doi: 10.1128/mbio.03260-23. Epub 2024 Jan 18.
5
PhaBOX: a web server for identifying and characterizing phage contigs in metagenomic data.
Bioinform Adv. 2023 Aug 2;3(1):vbad101. doi: 10.1093/bioadv/vbad101. eCollection 2023.
6
Refractory Pseudomonas aeruginosa infections treated with phage PASA16: A compassionate use case series.
Med. 2023 Sep 8;4(9):600-611.e4. doi: 10.1016/j.medj.2023.07.002. Epub 2023 Aug 9.
8
Phage tRNAs evade tRNA-targeting host defenses through anticodon loop mutations.
Elife. 2023 Jun 2;12:e85183. doi: 10.7554/eLife.85183.
9
Proksee: in-depth characterization and visualization of bacterial genomes.
Nucleic Acids Res. 2023 Jul 5;51(W1):W484-W492. doi: 10.1093/nar/gkad326.
10
PyHMMER: a Python library binding to HMMER for efficient sequence analysis.
Bioinformatics. 2023 May 4;39(5). doi: 10.1093/bioinformatics/btad214.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验