Suppr超能文献

在招聘中比较聊天机器人与心理测试:减少了社会期望偏差,但预测效度较低。

Comparing chatbots to psychometric tests in hiring: reduced social desirability bias, but lower predictive validity.

作者信息

Dukanovic Danilo, Krpan Dario

机构信息

Department of Psychological and Behavioural Science, The London School of Economics and Political Science, London, United Kingdom.

出版信息

Front Psychol. 2025 Apr 25;16:1564979. doi: 10.3389/fpsyg.2025.1564979. eCollection 2025.

Abstract

This paper explores the efficacy of AI-driven chatbots in accurately inferring personality traits compared to traditional psychometric tests within a real-world professional hiring context. The study is driven by the increasing integration of AI tools in recruitment processes, which necessitates a deeper understanding of their reliability and validity. Using a quasi-experimental design with propensity score matching, we analysed data from 159 candidates and other professionals from Serbian and Montenegrin regions who completed both traditional psychometric assessments and AI-based personality evaluations based on the Big Five Personality model. A novel one-question-per-facet approach was employed in the chatbot assessments with a goal of enabling more granular analysis of the chatbot's psychometric properties. The findings indicate that the chatbot demonstrated good structural, substantive, and convergent validity for certain traits, particularly Extraversion and Conscientiousness, but not for Neuroticism, Agreeableness, and Openness. While robust regression confirmed that AI-inferred scores are less susceptible to social desirability bias than traditional tests, they did not significantly predict real-world outcomes, indicating issues with external validity, particularly predictive validity. The results suggest that AI-driven chatbots show promise for identifying certain personality traits and demonstrate resistance to social desirability bias. This paper contributes to the emerging field of AI and psychometrics by offering insights into the potential and limitations of AI tools in professional selection, while developing an approach for refining psychometric properties of AI-driven assessments.

摘要

本文探讨了在现实世界的专业招聘背景下,与传统心理测量测试相比,人工智能驱动的聊天机器人在准确推断人格特质方面的有效性。该研究是由人工智能工具在招聘过程中日益广泛的应用所推动的,这就需要更深入地了解它们的可靠性和有效性。我们采用倾向得分匹配的准实验设计,分析了来自塞尔维亚和黑山地区的159名候选人及其他专业人士的数据,他们既完成了传统的心理测量评估,也完成了基于大五人格模型的人工智能人格评估。在聊天机器人评估中采用了一种新颖的每个维度一个问题的方法,目的是能够对聊天机器人的心理测量属性进行更细致的分析。研究结果表明,聊天机器人在某些特质方面,特别是外向性和尽责性方面,表现出良好的结构效度、内容效度和收敛效度,但在神经质、宜人性和开放性方面则不然。虽然稳健回归证实,人工智能推断的分数比传统测试更不容易受到社会期望偏差的影响,但它们并不能显著预测现实世界的结果,这表明存在外部效度问题,尤其是预测效度问题。结果表明,人工智能驱动的聊天机器人在识别某些人格特质方面显示出前景,并表现出对社会期望偏差的抵抗力。本文通过深入了解人工智能工具在专业选拔中的潜力和局限性,同时开发一种改进人工智能驱动评估的心理测量属性的方法,为人工智能与心理测量学这一新兴领域做出了贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/760a/12061966/4068a635d041/fpsyg-16-1564979-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验