Quinn Laura K, Sharma Kriti, Faber Katherine T, Orphan Victoria J
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
PNAS Nexus. 2025 Apr 16;4(5):pgaf118. doi: 10.1093/pnasnexus/pgaf118. eCollection 2025 May.
Microbes inhabiting complex porous microenvironments in sediments and aquifers catalyze reactions that are critical to global biogeochemical cycles and ecosystem health. However, the opacity and complexity of porous sediment and rock matrices have considerably hindered the study of microbial processes occurring within these habitats. Here, we generated microbially compatible, optically transparent mineral scaffolds to visualize and investigate microbial colonization and activities occurring in these environments, in laboratory settings and in situ. Using inexpensive synthetic cryolite mineral, we produced optically transparent scaffolds mimicking the complex 3D structure of sediments and rocks by adapting a suspension-based, freeze-casting technique commonly used in materials science. Fine-tuning of parameters, such as freezing rate and choice of solvent, provided full control of pore size and architecture. The combined effects of scaffold porosity and structure on the movement of microbe-sized particles, tested using velocity tracking of fluorescent beads, showed diverse yet reproducible behaviors. The scaffolds we produced are compatible with epifluorescence microscopy, allowing the fluorescence-based identification of colonizing microbes by DNA-based staining and fluorescence in situ hybridization (FISH) to depths of 100 µm. Additionally, Raman spectroscopy analysis indicates minimal background signal in regions used for measuring deuterium and C enrichment in microorganisms, highlighting the potential to directly couple DO or C stable isotope probing and Raman-FISH for quantifying microbial activity at the single-cell level. To demonstrate the relevance of cryolite scaffolds for environmental field studies, we visualized their colonization by diverse microorganisms within rhizosphere sediments of a coastal seagrass plant using epifluorescence microscopy. The tool presented here enables highly resolved, spatially explicit, and multimodal investigations into the distribution, activities, and interactions of underground microbes typically obscured within opaque geological materials until now.
栖息于沉积物和含水层中复杂多孔微环境的微生物催化着对全球生物地球化学循环和生态系统健康至关重要的反应。然而,多孔沉积物和岩石基质的不透明性和复杂性极大地阻碍了对这些生境中发生的微生物过程的研究。在此,我们生成了与微生物兼容的光学透明矿物支架,以便在实验室环境和原位条件下可视化并研究这些环境中发生的微生物定殖和活动。我们使用廉价的合成冰晶石矿物,通过采用材料科学中常用的基于悬浮液的冷冻铸造技术,制作出模仿沉积物和岩石复杂三维结构的光学透明支架。对诸如冷冻速率和溶剂选择等参数进行微调,可完全控制孔径和结构。使用荧光珠的速度追踪测试了支架孔隙率和结构对微生物大小颗粒运动的综合影响,结果显示出多样但可重复的行为。我们制作的支架与落射荧光显微镜兼容,通过基于DNA的染色和荧光原位杂交(FISH),能够对定殖微生物进行基于荧光的鉴定,深度可达100微米。此外,拉曼光谱分析表明,在用于测量微生物中氘和碳富集的区域背景信号极小,这突出了直接将溶解氧或碳稳定同位素探测与拉曼 - FISH相结合以在单细胞水平定量微生物活性的潜力。为了证明冰晶石支架在环境实地研究中的相关性,我们使用落射荧光显微镜观察了沿海海草植物根际沉积物中多种微生物对其的定殖情况。本文介绍的工具能够对通常隐藏在不透明地质材料中的地下微生物的分布、活动和相互作用进行高分辨率、空间明确且多模态的研究。