Suppr超能文献

自然光如何影响高铁司机的视觉行为。

How natural light influences HSR drivers' visual behavior.

作者信息

Li Pengfei, Gao Tianrun, Liu Zhuodong, Liu Boyu, Li Qian, Luan Jing, Chen Qun, Zhu Jianjun

机构信息

The State Key Laboratory of Heavy Duty AC Drive Electric Locomotive Systems Integration, Zhuzhou, China.

CRRC Zhuzhou Locomotive Co., Ltd., Zhuzhou, China.

出版信息

Front Public Health. 2025 Mar 24;13:1555387. doi: 10.3389/fpubh.2025.1555387. eCollection 2025.

Abstract

Existing studies have shown that the lighting environment is essential in influencing a driver's visual behavior. Due to the pivotal role of high-speed railway (HSR) in worldwide transit, it is necessary to examine how HSR drivers' visual behavior adjust under different lighting environments. However, the methods for evaluating and categorizing lighting conditions have not been fully explored. In this study, we established a general framework for examining the impact of lighting on driver's visual behavior. The application of this framework to explore the effects of natural light on HSR drivers' visual characteristics was elaborated. Particularly, we used unsupervised machine learning methods to classify natural light conditions automatically. Specifically, Fuxing HSR simulation, illuminance meter, and Tobii Nano eye-tracker were employed to collect data. K-means clustering analysis of daily illuminance data identified 3 natural light conditions, namely low illuminance (1 -6 ), medium illuminance (6 -9 ), by and high illuminance (9 -1 ). Further, ANOVA with 3 natural light environments * 2 tunnel conditions * 4 areas of interest (AOIs) were conducted. Results manifested drivers' visual characteristics under different natural light conditions. Specifically, lower illuminance can lead to a wider average pupil diameter, while higher illuminance results in a greater number of fixations and saccades, and a shorter time to first fixation. Moreover, all the eye movement indicators are highest for the speed dial AOI. This study contributes to the field by developing a framework to examine the effects of lighting on drivers' visual behavior. The findings provide new insights into analyzing lighting environments by using machine learning methods, which servers to HSR driving safety and operational management.

摘要

现有研究表明,照明环境对驾驶员的视觉行为有至关重要的影响。由于高速铁路在全球交通运输中发挥着关键作用,因此有必要研究高速铁路驾驶员的视觉行为在不同照明环境下是如何调整的。然而,用于评估和分类照明条件的方法尚未得到充分探索。在本研究中,我们建立了一个用于研究照明对驾驶员视觉行为影响的通用框架。阐述了该框架在探索自然光对高速铁路驾驶员视觉特征影响方面的应用。具体而言,我们使用无监督机器学习方法自动对自然光条件进行分类。具体来说,采用复兴号高铁模拟器、照度计和托比艾眼动仪来收集数据。通过对每日照度数据进行K均值聚类分析,确定了3种自然光条件,即低照度(1 - 6)、中等照度(6 - 9)和高照度(9 - 1)。此外,进行了3种自然光环境×2种隧道条件×4个感兴趣区域(AOI)的方差分析。结果显示了不同自然光条件下驾驶员的视觉特征。具体而言,较低照度会导致平均瞳孔直径更宽,而较高照度会导致注视次数和扫视次数更多,首次注视时间更短。此外,速度表盘AOI的所有眼动指标都是最高的。本研究通过开发一个框架来研究照明对驾驶员视觉行为的影响,为该领域做出了贡献。研究结果为利用机器学习方法分析照明环境提供了新的见解,这有助于高速铁路的驾驶安全和运营管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e16/12063535/22840f72a8c5/fpubh-13-1555387-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验