Suppr超能文献

整合PD-1和ICOS的预测模型用于自身免疫性脑炎与病毒性脑炎早期鉴别诊断的研究

Development of a prediction model integrating PD-1 and ICOS for early differential diagnosis between autoimmune and viral encephalitis.

作者信息

Xu Kaiyue, Jia Jinjing, Duan Yinghui, Chen Shuying, Xiao Xinyi, Zhu Feng, Wang Xin, Gu Yanzheng, Tian Jingluan, Xue Qun

机构信息

Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China.

Jiangsu Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.

出版信息

Front Immunol. 2025 Apr 25;16:1550963. doi: 10.3389/fimmu.2025.1550963. eCollection 2025.

Abstract

BACKGROUND

Early diagnosis and treatment for encephalitis are crucial for improving patient outcomes and reducing the economic burden, especially given the overlapping symptoms and low specificity of auxiliary diagnostic tests between viral encephalitis (VE) and autoimmune encephalitis (AE). Since these two conditions require different treatment approaches, an early differential diagnosis between AE and VE is a critical challenge.

METHODS

This study enrolled a cohort of 75 patients (38 with VE and 37 with AE) between September 2022 and July 2024. The demographic data, clinical characteristics, and laboratory test results were collected. The expression levels of co-stimulatory molecules were detected by flow cytometry and enzyme-linked immunosorbent assay within 7 days for viral encephalitis and 90 days for autoimmune encephalitis in the early phase of the disease. Differential analysis, logistic regression analysis, and least absolute shrinkage and selection operator regression were employed for model construction. Finally, a nomogram and a receiver operating characteristic (ROC) curve were developed to visualize the model and evaluate its predictive accuracy.

RESULTS

Upon analyzing the collected data, a model for the early differential diagnosis between AE and VE was eventually established. This comprehensive model incorporated 10 variables: serum creatinine and chloride levels, the percentage of peripheral blood CD4ICOS and CD19PD-L1, plasma soluble inducible costimulatory ligand (sICOSL), cerebrospinal fluid (CSF) glucose content, and the presence of fever, nausea, vomiting, headaches, and cognitive impairment. Patients with creatinine <60.75 (μmol/L), chloride <106.25 (mmol/L), CD4ICOS ≥11.2%, CD19PD-L1 ≥12.35%, plasma sICOSL≥286.37 ng/mL, CSF sugar content ≥3.775 (mmol/L), and those with cognitive impairment are more likely to be diagnosed with AE. The area under the curve (AUC)-ROC of our model was 0.942 [95% confidence interval (CI): 0.887-0.997], with a sensitivity of 0.844 and a specificity of 0.971, indicating strong diagnostic performance.

CONCLUSION

This diagnostic model offers a convenient tool for distinguishing AE from VE in the early phase, facilitating early diagnosis and treatment, improving patient prognosis, and reducing financial burdens.

摘要

背景

鉴于病毒性脑炎(VE)和自身免疫性脑炎(AE)症状重叠且辅助诊断检查特异性低,脑炎的早期诊断和治疗对于改善患者预后及减轻经济负担至关重要。由于这两种病症需要不同的治疗方法,AE和VE的早期鉴别诊断是一项严峻挑战。

方法

本研究纳入了2022年9月至2024年7月期间的75例患者(38例VE患者和37例AE患者)。收集了人口统计学数据、临床特征和实验室检查结果。在疾病早期,对于病毒性脑炎在7天内、自身免疫性脑炎在90天内,通过流式细胞术和酶联免疫吸附测定法检测共刺激分子的表达水平。采用差异分析、逻辑回归分析和最小绝对收缩和选择算子回归进行模型构建。最后,绘制了列线图和受试者工作特征(ROC)曲线以直观展示模型并评估其预测准确性。

结果

通过对收集的数据进行分析,最终建立了AE和VE早期鉴别诊断模型。该综合模型纳入了10个变量:血清肌酐和氯水平、外周血CD4ICOS和CD19PD-L1的百分比、血浆可溶性诱导共刺激配体(sICOSL)、脑脊液(CSF)葡萄糖含量,以及发热、恶心、呕吐、头痛和认知障碍的存在情况。肌酐<60.75(μmol/L)、氯<106.25(mmol/L)、CD4ICOS≥11.2%、CD19PD-L1≥12.35%、血浆sICOSL≥286.37 ng/mL、CSF糖含量≥3.775(mmol/L)且有认知障碍的患者更有可能被诊断为AE。我们模型的曲线下面积(AUC)-ROC为0.942[95%置信区间(CI):0.887 - 0.997],灵敏度为0.844,特异性为0.971,表明具有较强的诊断性能。

结论

该诊断模型为早期区分AE和VE提供了便捷工具,有助于早期诊断和治疗,改善患者预后并减轻经济负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3fe5/12061884/e75ecd847027/fimmu-16-1550963-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验