Suppr超能文献

病毒性与自身免疫性边缘叶脑炎的鉴别:一项诊断模型开发与验证的前瞻性队列研究。

Differentiation between viral and autoimmune limbic encephalitis: a prospective cohort study with development and validation of a diagnostic model.

作者信息

Kong Xueying, Guo Kundian, Liu Xu, Gong Xue, Li Aiqing, Cai Linjun, Deng Xiaolin, Li Xingjie, Ye Ruixi, Li Jinmei, An Dongmei, Liu Jie, Zhou Dong, Hong Zhen

机构信息

Department of Neurology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, Sichuan, People's Republic of China.

Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.

出版信息

J Neurol. 2024 Aug;271(8):5301-5311. doi: 10.1007/s00415-024-12468-0. Epub 2024 Jun 11.

Abstract

BACKGROUND

Distinguishing between viral encephalitis (VE) and autoimmune limbic encephalitis (ALE) presents a clinical challenge due to the overlap in symptoms. We aimed to develop and validate a diagnostic prediction model to differentiate VE and ALE.

METHODS

A prospective observational multicentre cohort study, which continuously enrolled patients diagnosed with either ALE or VE from October 2011 to April 2023. The demographic data, clinical features, and laboratory test results were collected and subjected to logistic regression analyses. The model was displayed as a web-based nomogram and then modified into a scored prediction tool. Model performance was assessed in both derivation and external validation cohorts.

RESULTS

A total of 2423 individuals were recruited, and 1001 (496 VE, 505 ALE) patients were included. Based on the derivation cohort (389 VE, 388 ALE), the model was developed with eight variables including age at onset, acuity, fever, headache, nausea/vomiting, psychiatric or memory complaints, status epilepticus, and CSF white blood cell count. The model showed good discrimination and calibration in both derivation (AUC 0.890; 0.868-0.913) and external validation (107 VE, 117 ALE, AUC 0.872; 0.827-0.917) cohorts. The scored prediction tool had a total point that ranged from - 4 to 10 also showing good discrimination and calibration in both derivation (AUC 0.885, 0.863-0.908) and external validation (AUC 0.868, 0.823-0.913) cohorts.

CONCLUSIONS

The prediction model provides a reliable and user-friendly tool for differentiating between the VE and ALE, which would benefit early diagnosis and appropriate treatment and alleviate economic burdens on both patients and society.

摘要

背景

由于症状重叠,区分病毒性脑炎(VE)和自身免疫性边缘叶脑炎(ALE)是一项临床挑战。我们旨在开发并验证一种诊断预测模型,以区分VE和ALE。

方法

一项前瞻性观察性多中心队列研究,于2011年10月至2023年4月连续纳入诊断为ALE或VE的患者。收集人口统计学数据、临床特征和实验室检查结果,并进行逻辑回归分析。该模型以基于网络的列线图形式展示,然后修改为评分预测工具。在推导队列和外部验证队列中评估模型性能。

结果

共招募了2423名个体,纳入1001例患者(496例VE,505例ALE)。基于推导队列(389例VE,388例ALE),该模型由八个变量构建,包括发病年龄、病情严重程度、发热、头痛、恶心/呕吐、精神或记忆方面的主诉、癫痫持续状态和脑脊液白细胞计数。该模型在推导队列(AUC 0.890;0.868 - 0.913)和外部验证队列(107例VE,117例ALE,AUC 0.872;0.827 - 0.917)中均显示出良好的区分度和校准度。评分预测工具的总分范围为 - 4至10,在推导队列(AUC 0.885,0.863 - 0.908)和外部验证队列(AUC 0.868,0.823 - 0.913)中也显示出良好的区分度和校准度。

结论

该预测模型为区分VE和ALE提供了一种可靠且用户友好的工具,这将有助于早期诊断和适当治疗,并减轻患者和社会的经济负担。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验