Suppr超能文献

影响人源化小鼠的全身代谢。

influences whole body metabolism in humanized mice.

作者信息

Hembruff Stacey, Dekonenko Alexander, Thyfault John P, Sardiu Mihaela E, Washburn Michael P, Mackintosh Samuel G, Byrum Stephanie D, Jensen Roy A, Harlan-Williams Lisa M

机构信息

The University of Kansas Cancer Center, Kansas City, KS, United States.

Department of Cell Biology and Physiology, The University of Kansas Medical Center, Kansas City, Kansas, United States.

出版信息

Am J Physiol Endocrinol Metab. 2025 Jun 1;328(6):E979-E993. doi: 10.1152/ajpendo.00222.2024. Epub 2025 May 12.

Abstract

The role of in cellular metabolism is not fully characterized and what we do understand has been primarily demonstrated in vitro. Our studies aimed to characterize the role of in metabolic pathways in a whole body system. In vivo studies using C57BL/6 wild-type and transgenic humanized mice demonstrate the effect of human on the whole body metabolic phenotype and start to elucidate the mechanism by which this occurs. Promethion metabolic chambers and glucose tolerance tests measured a number of metabolic outputs of male and female mice that were either wild-type (normal mouse gene) or humanized mice (knockout /knock-in human gene). Humanized mice are more lean, hyperactive, display higher energy expenditure, and demonstrate a sexual dimorphism in lean mass and glucose tolerance when compared with wild-type mice on the same genetic background. To begin to elucidate the mechanisms behind the observed metabolic phenotype, we performed mass spectrometry, SuperArray, and Western blot analysis using skeletal muscle, a metabolic organ that significantly impacts energy metabolism. Proteomic and genomic analysis revealed changes in a number of metabolic pathways that may be implicated in the observed whole body metabolic phenotype. We concluded that substituting for in an in vivo model altered the overall metabolic profile of humanized mice. Thus, the gene appears to have a significant impact on metabolic pathways, and these effects differ from mouse to human. This is the first in vivo evidence demonstrating the complex effects of expression in whole body metabolism.

摘要

在细胞代谢中的作用尚未完全明确,而我们目前所了解的情况主要是在体外实验中得到证实的。我们的研究旨在明确在全身系统的代谢途径中的作用。使用C57BL/6野生型和转基因人源化小鼠进行的体内研究,证明了人对全身代谢表型的影响,并开始阐明其发生机制。Promethion代谢室和葡萄糖耐量试验测量了野生型(正常小鼠基因)或人源化小鼠(敲除/敲入人基因)的雄性和雌性小鼠的多项代谢指标。与具有相同遗传背景的野生型小鼠相比,人源化小鼠更瘦、活动过度、能量消耗更高,并且在瘦体重和葡萄糖耐量方面表现出性别差异。为了开始阐明所观察到的代谢表型背后的机制,我们使用骨骼肌进行了质谱分析、SuperArray分析和蛋白质印迹分析,骨骼肌是一个对能量代谢有显著影响的代谢器官。蛋白质组学和基因组分析揭示了一些可能与所观察到的全身代谢表型有关的代谢途径的变化。我们得出结论,在体内模型中用人替代会改变人源化小鼠的整体代谢概况。因此,基因似乎对代谢途径有显著影响,而且这些影响在小鼠和人类之间存在差异。这是首个证明在全身代谢中表达具有复杂影响的体内证据。

相似文献

1
influences whole body metabolism in humanized mice.
Am J Physiol Endocrinol Metab. 2025 Jun 1;328(6):E979-E993. doi: 10.1152/ajpendo.00222.2024. Epub 2025 May 12.
2
Metabolic physiology and skeletal muscle phenotypes in male and female myoglobin knockout mice.
Am J Physiol Endocrinol Metab. 2021 Jul 1;321(1):E63-E79. doi: 10.1152/ajpendo.00624.2020. Epub 2021 May 10.
4
Induced in vivo knockdown of the Brca1 gene in skeletal muscle results in skeletal muscle weakness.
J Physiol. 2019 Feb;597(3):869-887. doi: 10.1113/JP276863. Epub 2018 Dec 16.
5
Genetically increasing flux through β-oxidation in skeletal muscle increases mitochondrial reductive stress and glucose intolerance.
Am J Physiol Endocrinol Metab. 2021 May 1;320(5):E938-E950. doi: 10.1152/ajpendo.00010.2021. Epub 2021 Apr 5.
6
Separate and overlapping metabolic functions of LXRalpha and LXRbeta in C57Bl/6 female mice.
Am J Physiol Endocrinol Metab. 2010 Feb;298(2):E167-78. doi: 10.1152/ajpendo.00184.2009. Epub 2009 Aug 18.
7
Expression of uncoupling protein 1 in skeletal muscle decreases muscle energy efficiency and affects thermoregulation and substrate oxidation.
Physiol Genomics. 2005 Apr 14;21(2):193-200. doi: 10.1152/physiolgenomics.00299.2004. Epub 2005 Feb 1.
8
Urocortin 3 transgenic mice exhibit a metabolically favourable phenotype resisting obesity and hyperglycaemia on a high-fat diet.
Diabetologia. 2011 Sep;54(9):2392-403. doi: 10.1007/s00125-011-2205-6. Epub 2011 Jun 11.

本文引用的文献

2
Insulin-like growth factor binding protein 5: Diverse roles in cancer.
Front Oncol. 2022 Nov 17;12:1052457. doi: 10.3389/fonc.2022.1052457. eCollection 2022.
3
BRCA1: An Endocrine and Metabolic Regulator.
Front Endocrinol (Lausanne). 2022 Mar 31;13:844575. doi: 10.3389/fendo.2022.844575. eCollection 2022.
5
Histological Findings of Mammary Gland Development and Risk of Breast Cancer in Mutant Mouse Models.
J Breast Cancer. 2021 Oct;24(5):455-462. doi: 10.4048/jbc.2021.24.e44. Epub 2021 Oct 5.
6
Revisiting energy expenditure: how to correct mouse metabolic rate for body mass.
Nat Metab. 2021 Sep;3(9):1134-1136. doi: 10.1038/s42255-021-00451-2.
7
Lifestyle Characteristics in Women Carriers of BRCA Mutations: Results From an Italian Trial Cohort.
Clin Breast Cancer. 2021 Jun;21(3):e168-e176. doi: 10.1016/j.clbc.2020.11.002. Epub 2020 Nov 10.
8
BRCA1/2 Variants and Metabolic Factors: Results From a Cohort of Italian Female Carriers.
Cancers (Basel). 2020 Nov 30;12(12):3584. doi: 10.3390/cancers12123584.
9
proteiNorm - A User-Friendly Tool for Normalization and Analysis of TMT and Label-Free Protein Quantification.
ACS Omega. 2020 Sep 30;5(40):25625-25633. doi: 10.1021/acsomega.0c02564. eCollection 2020 Oct 13.
10
Metabolism.
Essays Biochem. 2020 Oct 8;64(4):607-647. doi: 10.1042/EBC20190041.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验