Suppr超能文献

一种使用机器学习和可解释人工智能的新型输尿管镜检查和激光碎石术预测方法:来自FLEXOR国际数据库的结果

A novel predictive method for URS and laser lithotripsy using machine learning and explainable AI: results from the FLEXOR international database.

作者信息

Nedbal Carlotta, Gauhar Vineet, Adithya Sairam, Tramanzoli Pietro, Naik Nithesh, Gite Shilpa, Sevalia Het, Castellani Daniele, Panthier Frédéric, Teoh Jeremy Y C, Chew Ben H, Fong Khi Yung, Boulmani Mohammed, Gadzhiev Nariman, Singh Abhishek Gajendra, Herrmann Thomas R W, Traxer Olivier, Somani Bhaskar K

机构信息

ASST Fatebenefratelli Sacco, Urology, Milan, Italy.

Endourology Section, European Association of Urology, Arnhem, The Netherlands.

出版信息

World J Urol. 2025 May 12;43(1):294. doi: 10.1007/s00345-025-05551-2.

Abstract

PURPOSE

We developed Machine learning (ML) algorithms to predict ureteroscopy (URS) outcomes, offering insights into diagnosis and treatment planning, personalised care and improved clinical decision-making.

METHODS

FLEXOR is a large international multicentric database including 6669 patients treated with URS for urolithiasis from 2015 to 2023. Preoperative and postoperative(PO) correlations were investigated through 15 ML-trained algorithms. Outcomes included stone free status (SFS, at 3-month imaging follow up), intraoperative (PCS bleeding, ureteric/PCS injury, need for postoperative drainage) and PO complications (fever, sepsis, need for reintervention). ML was applied for the prediction, correlation and logistic regression analysis. Explainable AI emphasizes key features and their contributions to the output.

RESULTS

Extra Tree Classifier achieved the best accuracy (81%) in predicting SFS. PCS bleed was negatively linked with 'positive urine culture'(-0.08), 'tamsulosin'(-0.08), 'stone location'(-0.10), 'fibre optic scope'(-0.19), 'Moses Fibre'(-0.09), and 'TFL'(-0.09), and positively with 'elevated creatine'(0.25), 'fever'(0.11), and 'stone diameter'(0.21). 'PCS injury' and 'ureteric injury' both showed moderate correlation with 'elevated creatinine'(0.11), 'fever'(0.10), and 'lower pole stone'(0.09). 'Tamsulosin'(0.23) use, presence of 'multiple'(0.25) or 'lower pole'(0.25) stones, 'reusable scope'(0.17) and 'Moses Fibre'(0.2546) increased the risk for PO stent, while 'digital scope'(-0.13) or 'TFL'(-0.29) reduced it. 'Preoperative fever'(0.10), 'positive urine culture'(0.16), and 'stone diameter'(0.10) may play a role in 'PO fever' and 'sepsis'. SFS was mainly influenced by 'age'(0.12), 'preoperative fever'(0.09), 'multiple stones'(0.15), 'stone diameter'(0.17), 'Moses Fibre"(0.15) and 'TFL'(-0.28).

CONCLUSION

ML is valuable tool for accurately predicting outcomes by analysing pre-existing datasets. Our model demonstrated strong performance in outcomes and risks prediction, laying the groundwork for development of accessible predictive models.

摘要

目的

我们开发了机器学习(ML)算法来预测输尿管镜检查(URS)的结果,为诊断和治疗计划、个性化护理以及改善临床决策提供见解。

方法

FLEXOR是一个大型国际多中心数据库,包括2015年至2023年接受URS治疗尿路结石的6669例患者。通过15种经过ML训练的算法研究术前和术后(PO)的相关性。结果包括结石清除状态(SFS,3个月影像学随访时)、术中(PCS出血、输尿管/PCS损伤、术后引流需求)和PO并发症(发热、脓毒症、再次干预需求)。ML用于预测、相关性和逻辑回归分析。可解释人工智能强调关键特征及其对输出的贡献。

结果

Extra Tree分类器在预测SFS方面达到了最佳准确率(81%)。PCS出血与“尿培养阳性”(-0.08)、“坦索罗辛”(-0.08)、“结石位置”(-0.10)、“纤维光学镜”(-0.19)、“摩西光纤”(-0.09)和“TFL”(-0.09)呈负相关,与“肌酐升高”(0.25)、“发热”(0.11)和“结石直径”(0.21)呈正相关。“PCS损伤”和“输尿管损伤”均与“肌酐升高”(0.11)、“发热”(0.10)和“下极结石”(0.09)呈中度相关。使用“坦索罗辛”(0.23)、存在“多发”(0.25)或“下极”(0.25)结石、“可重复使用镜”(0.17)和“摩西光纤”(0.2546)会增加PO支架置入的风险,而“数字镜”(-0.13)或“TFL”(-0.29)会降低该风险。“术前发热”(0.10)、“尿培养阳性”(0.16)和“结石直径”(0.10)可能在“PO发热”和“脓毒症”中起作用。SFS主要受“年龄”(0.12)、“术前发热”(0.09)、“多发结石”(0.15)、“结石直径”(0.17)、“摩西光纤”(0.15)和“TFL”(-0.28)影响。

结论

ML是通过分析现有数据集准确预测结果的有价值工具。我们的模型在结果和风险预测方面表现出色,为开发可访问的预测模型奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08bb/12069140/6c1c5477e155/345_2025_5551_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验