认知任务期间额叶皮质功能连接的动态变化:双n-back范式中功能近红外光谱分析的见解

Dynamics of frontal cortex functional connectivity during cognitive tasks: insights from fNIRS analysis in the Dual n-back Paradigm.

作者信息

Shirzadi Sima, Dadgostar Mehrdad, Hosseinzadeh Hamidreza, Einalou Zahra

机构信息

Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.

出版信息

Cogn Process. 2025 May 12. doi: 10.1007/s10339-025-01275-8.

Abstract

The human brain operates as a complex network, and understanding its functional connectivity is a core challenge in neuroscience. Functional near-infrared spectroscopy (fNIRS) offers a non-invasive, portable method for studying brain activity and connectivity, providing valuable insights into the brain's network dynamics. In this study, we used fNIRS to examine the functional connectivity of the human brain during the Dual n-back task, a cognitive challenge that varies in memory load (0-back, 1-back, and 2-back). Data were collected from 24 channels in the frontal cortex and pre-processed with discrete wavelet transform. Functional connectivity matrices for each task level were calculated using correlation analysis, and graph theory metrics such as clustering coefficient and local and global efficiency were assessed. Statistical comparisons (t-tests and ANOVA) revealed significant differences in these metrics across memory load levels, with higher memory loads leading to altered brain connectivity patterns (p < 0.05 for clustering coefficient and local efficiency, p < 0.04 for global efficiency). These findings suggest that as cognitive demand increases, the functional connectivity of the brain's frontal network changes, reflecting the dynamic nature of brain activity during complex tasks. This research highlights the potential of fNIRS for exploring brain network functions and has broader implications for understanding cognitive processes and developing neurocognitive diagnostics and interventions.

摘要

人类大脑作为一个复杂的网络运行,理解其功能连接是神经科学的核心挑战。功能近红外光谱技术(fNIRS)提供了一种用于研究大脑活动和连接的非侵入性、便携式方法,为洞察大脑的网络动态提供了有价值的见解。在本研究中,我们使用fNIRS来检测人类大脑在双n-back任务期间的功能连接,该任务是一种在记忆负荷(0-back、1-back和2-back)上有所变化的认知挑战。数据从额叶皮质的24个通道收集,并使用离散小波变换进行预处理。使用相关性分析计算每个任务水平的功能连接矩阵,并评估诸如聚类系数以及局部和全局效率等图论指标。统计比较(t检验和方差分析)揭示了这些指标在不同记忆负荷水平上存在显著差异,更高的记忆负荷导致大脑连接模式改变(聚类系数和局部效率p < 0.05,全局效率p < 0.04)。这些发现表明,随着认知需求增加,大脑额叶网络的功能连接发生变化,反映了复杂任务期间大脑活动的动态性质。这项研究突出了fNIRS在探索大脑网络功能方面的潜力,并且对于理解认知过程以及开发神经认知诊断和干预措施具有更广泛的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索