Nagino Ken, Akasaki Yasutsugu, Fuse Nobuo, Ogishima Soichi, Shimizu Atsushi, Uruno Akira, Sutoh Yoichi, Otsuka-Yamasaki Yayoi, Nagami Fuji, Seita Jun, Nakamura Tomohiro, Nagaie Satoshi, Taira Makiko, Kobayashi Tomoko, Shimizu Ritsuko, Hozawa Atsushi, Kuriyama Shinichi, Eguchi Atsuko, Midorikawa-Inomata Akie, Nakamura Masahiro, Murakami Akira, Nakao Shintaro, Inomata Takenori
Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
JMIR Res Protoc. 2025 May 12;14:e67862. doi: 10.2196/67862.
BACKGROUND: Dry eye disease (DED) is a common ocular condition with diverse and heterogeneous symptoms. Current treatment standards of DED include the post facto management of associated symptoms through topical eye drops. However, there is a need for predictive, preventive, personalized, and participatory medicine. The DryEyeRhythm mobile health app enables real-time data collection on environmental, lifestyle, host, and digital factors in a patient's daily environment. Combining these data with genetic information from biobanks could enhance our understanding of individual variations and facilitate the development of personalized treatment strategies for DED. OBJECTIVE: This study aims to integrate digital data from the DryEyeRhythm smartphone app with the Tohoku Medical Megabank database to create a comprehensive database that elucidates the interplay between multifactorial factors and the onset and progression of DED. METHODS: This prospective observational cohort study will include 1200 participants for the discovery stage and 1000 participants for the replication stage, all of whom have data available in the Tohoku Medical Megabank database. Participants will be recruited from the Community Support Center of Sendai, Miyagi Prefecture, Japan. Participant enrollment for the discovery stage was conducted from August 1, 2021, to June 30, 2022, and the replication stage will be conducted from August 31, 2024, to March 31, 2026. Participants will provide demographic data, medical history, lifestyle information, DED symptoms, and maximum blink interval measurements at baseline and after 30 days using the DryEyeRhythm smartphone app. Upon scanning a registration code, each participant's cohort ID from the Tohoku Medical Megabank database will be linked to their smartphone app, enabling data integration between the Tohoku Medical Megabank and DryEyeRhythm database. The primary outcome will assess the association between genetic polymorphisms and DED using a genome-wide association study. Secondary outcomes will explore associations between DED and various factors, including sociodemographic characteristics, lifestyle habits, medical history, biospecimen analyses (eg, blood and urine), and physiological measurements (eg, height, weight, and eye examination results). Associations will be evaluated using logistic regression analysis, adjusting for potential confounding factors. RESULTS: The discovery stage of participant enrollment was conducted from August 1, 2021, to June 30, 2022. The replication stage will take place from August 31, 2024, to March 31, 2026. Data analysis is expected to be completed by September 2026, with results reported by March 2027. CONCLUSIONS: This study highlights the potential of smartphone apps in advancing biobank research and deepening the understanding of multifactorial DED, paving the way for personalized treatment strategies in the future. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/67862.
背景:干眼症(DED)是一种常见的眼部疾病,症状多样且异质性强。当前干眼症的治疗标准包括通过局部滴眼液对症后处理相关症状。然而,需要预测性、预防性、个性化和参与性医疗。DryEyeRhythm移动健康应用程序能够实时收集患者日常环境中的环境、生活方式、宿主和数字因素数据。将这些数据与生物样本库的基因信息相结合,可增强我们对个体差异的理解,并促进干眼症个性化治疗策略的制定。 目的:本研究旨在将DryEyeRhythm智能手机应用程序的数字数据与东北医学大数据库整合,创建一个全面的数据库,以阐明多因素与干眼症发病及进展之间的相互作用。 方法:这项前瞻性观察性队列研究将包括1200名发现阶段参与者和1000名复制阶段参与者,他们在东北医学大数据库中均有可用数据。参与者将从日本宫城县仙台市社区支持中心招募。发现阶段的参与者招募于2021年8月1日至2022年6月30日进行,复制阶段将于2024年8月31日至2026年3月31日进行。参与者将在基线和30天后使用DryEyeRhythm智能手机应用程序提供人口统计学数据、病史、生活方式信息、干眼症症状以及最大眨眼间隔测量值。扫描注册码后,每个参与者在东北医学大数据库中的队列ID将与其智能手机应用程序关联,从而实现东北医学大数据库与DryEyeRhythm数据库之间的数据整合。主要结局将使用全基因组关联研究评估基因多态性与干眼症之间的关联。次要结局将探索干眼症与各种因素之间的关联,包括社会人口学特征、生活习惯、病史、生物样本分析(如血液和尿液)以及生理测量(如身高、体重和眼部检查结果)。将使用逻辑回归分析评估关联,并对潜在混杂因素进行调整。 结果:发现阶段的参与者招募于2021年8月1日至2022年6月30日进行。复制阶段将于2024年8月31日至2026年3月31日进行。数据分析预计于2026年9月完成,结果将于2027年3月报告。 结论:本研究突出了智能手机应用程序在推进生物样本库研究和深化对多因素干眼症理解方面的潜力,为未来的个性化治疗策略铺平了道路。 国际注册报告识别码(IRRID):DERR1-10.2196/67862。
Juntendo Iji Zasshi. 2023-1-26
J Epidemiol. 2016-9-5
Nucleic Acids Res. 2024-1-5
Biomolecules. 2023-1-31