Suppr超能文献

一款用于干眼症诊断的智能手机应用程序的诊断能力:一项多中心、开放标签、前瞻性横断面研究方案

Diagnostic Ability of a Smartphone App for Dry Eye Disease: Protocol for a Multicenter, Open-Label, Prospective, and Cross-sectional Study.

作者信息

Nagino Ken, Okumura Yuichi, Yamaguchi Masahiro, Sung Jaemyoung, Nagao Masashi, Fujio Kenta, Akasaki Yasutsugu, Huang Tianxiang, Hirosawa Kunihiko, Iwagami Masao, Midorikawa-Inomata Akie, Fujimoto Keiichi, Eguchi Atsuko, Okajima Yukinobu, Kakisu Koji, Tei Yuto, Yamaguchi Takefumi, Tomida Daisuke, Fukui Masaki, Yagi-Yaguchi Yukari, Hori Yuichi, Shimazaki Jun, Nojiri Shuko, Morooka Yuki, Yee Alan, Miura Maria, Ohno Mizu, Inomata Takenori

机构信息

Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo, Japan.

Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.

出版信息

JMIR Res Protoc. 2023 Mar 13;12:e45218. doi: 10.2196/45218.

Abstract

BACKGROUND

Dry eye disease (DED) is one of the most common ocular surface diseases. Numerous patients with DED remain undiagnosed and inadequately treated, experiencing various subjective symptoms and a decrease in quality of life and work productivity. A mobile health smartphone app, namely, the DEA01, has been developed as a noninvasive, noncontact, and remote screening device, in the context of an ongoing paradigm shift in the health care system, to facilitate a diagnosis of DED.

OBJECTIVE

This study aimed to evaluate the capabilities of the DEA01 smartphone app to facilitate a DED diagnosis.

METHODS

In this multicenter, open-label, prospective, and cross-sectional study, the test method will involve using the DEA01 smartphone app to collect and evaluate DED symptoms, based on the Japanese version of the Ocular Surface Disease Index (J-OSDI), and to measure the maximum blink interval (MBI). The standard method will then involve a paper-based J-OSDI evaluation of subjective symptoms of DED and tear film breakup time (TFBUT) measurement in an in-person encounter. We will allocate 220 patients to DED and non-DED groups, based on the standard method. The primary outcome will be the sensitivity and specificity of the DED diagnosis according to the test method. Secondary outcomes will be the validity and reliability of the test method. The concordance rate, positive and negative predictive values, and the likelihood ratio between the test and standard methods will be assessed. The area under the curve of the test method will be evaluated using a receiver operating characteristic curve. The internal consistency of the app-based J-OSDI and the correlation between the app-based J-OSDI and paper-based J-OSDI will be assessed. A DED diagnosis cutoff value for the app-based MBI will be determined using a receiver operating characteristic curve. The app-based MBI will be assessed to determine a correlation between a slit lamp-based MBI and TFBUT. Adverse events and DEA01 failure data will be collected. Operability and usability will be assessed using a 5-point Likert scale questionnaire.

RESULTS

Patient enrollment will start in February 2023 and end in July 2023. The findings will be analyzed in August 2023, and the results will be reported from March 2024 onward.

CONCLUSIONS

This study may have implications in identifying a noninvasive, noncontact route to facilitate a diagnosis of DED. The DEA01 may enable a comprehensive diagnostic evaluation within a telemedicine setting and facilitate early intervention for undiagnosed patients with DED confronting health care access barriers.

TRIAL REGISTRATION

Japan Registry of Clinical Trials jRCTs032220524; https://jrct.niph.go.jp/latest-detail/jRCTs032220524.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/45218.

摘要

背景

干眼症(DED)是最常见的眼表疾病之一。众多干眼症患者仍未得到诊断和充分治疗,经历着各种主观症状,生活质量和工作效率下降。在医疗保健系统正在发生范式转变的背景下,一款移动健康智能手机应用程序,即DEA01,已被开发为一种非侵入性、非接触式和远程筛查设备,以促进干眼症的诊断。

目的

本研究旨在评估DEA01智能手机应用程序促进干眼症诊断的能力。

方法

在这项多中心、开放标签、前瞻性横断面研究中,测试方法将包括使用DEA01智能手机应用程序,基于日本版眼表疾病指数(J-OSDI)收集和评估干眼症症状,并测量最大眨眼间隔(MBI)。标准方法随后将包括在面对面会诊中对干眼症主观症状进行基于纸质J-OSDI的评估以及测量泪膜破裂时间(TFBUT)。我们将根据标准方法将220名患者分为干眼症组和非干眼症组。主要结局将是根据测试方法进行干眼症诊断的敏感性和特异性。次要结局将是测试方法的有效性和可靠性。将评估测试方法与标准方法之间的一致性率、阳性和阴性预测值以及似然比。将使用受试者工作特征曲线评估测试方法的曲线下面积。将评估基于应用程序的J-OSDI的内部一致性以及基于应用程序的J-OSDI与基于纸质的J-OSDI之间的相关性。将使用受试者工作特征曲线确定基于应用程序的MBI的干眼症诊断临界值。将评估基于应用程序的MBI以确定基于裂隙灯的MBI与TFBUT之间的相关性。将收集不良事件和DEA01故障数据。将使用5点李克特量表问卷评估可操作性和可用性。

结果

患者招募将于2023年2月开始并于2023年7月结束。研究结果将于2023年8月进行分析,结果将于2024年3月起报告。

结论

本研究可能有助于确定一种非侵入性、非接触式途径以促进干眼症的诊断。DEA01可能能够在远程医疗环境中进行全面的诊断评估,并促进对面临医疗保健获取障碍的未诊断干眼症患者进行早期干预。

试验注册

日本临床试验注册中心jRCTs032220524;https://jrct.niph.go.jp/latest-detail/jRCTs032220524。

国际注册报告识别号(IRRID):PRR1-10.2196/45218。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bf3/10131757/e6d9fcd3d8b1/resprot_v12i1e45218_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验