Chen Dongkui, Yang Hong, Li Hao, He Xuanlong, Mu Hongbo
College of Science, Northeast Forestry University, Harbin, 150040, People's Republic of China.
Research Institute of Intelligent Control and Systems, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
Biomed Phys Eng Express. 2025 May 21;11(3). doi: 10.1088/2057-1976/add73d.
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the leading cause of dementia worldwide and remains incurable once it begins. Therefore, early and accurate diagnosis is essential for effective intervention. Leveraging recent advances in deep learning, this study proposes a novel diagnostic model based on the 3D-ResNet architecture to classify three cognitive states: AD, mild cognitive impairment (MCI), and cognitively normal (CN) individuals, using MRI data. The model integrates the strengths of ResNet and 3D convolutional neural networks (3D-CNN), and incorporates a special attention mechanism(SAM) within the residual structure to enhance feature representation. The study utilized the ADNI dataset, comprising 800 brain MRI scans. The dataset was split in a 7:3 ratio for training and testing, and the network was trained using data augmentation and cross-validation strategies. The proposed model achieved 92.33% accuracy in the three-class classification task, and 97.61%, 95.83%, and 93.42% accuracy in binary classifications of AD versus CN, AD versus MCI, and CN versus MCI, respectively, outperforming existing state-of-the-art methods. Furthermore, Grad-CAM heatmaps and 3D MRI reconstructions revealed that the cerebral cortex and hippocampus are critical regions for AD classification. These findings demonstrate a robust and interpretable AI-based diagnostic framework for AD, providing valuable technical support for its timely detection and clinical intervention.
阿尔茨海默病(AD)是一种进行性神经退行性疾病,是全球痴呆症的主要病因,一旦发病便无法治愈。因此,早期准确诊断对于有效干预至关重要。利用深度学习的最新进展,本研究提出了一种基于3D-ResNet架构的新型诊断模型,用于使用MRI数据对三种认知状态进行分类:AD、轻度认知障碍(MCI)和认知正常(CN)个体。该模型整合了ResNet和3D卷积神经网络(3D-CNN)的优势,并在残差结构中引入了一种特殊注意力机制(SAM)以增强特征表示。该研究使用了包含800次脑部MRI扫描的ADNI数据集。数据集按7:3的比例划分为训练集和测试集,并使用数据增强和交叉验证策略对网络进行训练。所提出的模型在三类分类任务中达到了92.33%的准确率,在AD与CN、AD与MCI以及CN与MCI的二分类中分别达到了97.61%、95.83%和93.42%的准确率,优于现有的最先进方法。此外,Grad-CAM热图和3D MRI重建显示,大脑皮层和海马体是AD分类的关键区域。这些发现证明了一种强大且可解释的基于人工智能的AD诊断框架,为其及时检测和临床干预提供了有价值的技术支持。