Artesani Alessia, Leonardi Lorenzo, Jandric Jelena, Muraglia Lorenzo, Tsoumpas Charalampos, Rodari Marcello, Evangelista Laura
Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy.
IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy.
Biomed Phys Eng Express. 2025 May 22;11(3). doi: 10.1088/2057-1976/add73e.
Parametric imaging from dynamic positron emission tomography (PET) has gained interest for tumour diagnostics and treatment response evaluation. However, the lack of a standardized method for generating the-reference curve for kinetic modelling-has led to inconsistent descriptors, contributing to uncertainties in parametric imaging reliability. This study aims to address this challenge by proposing a hyperparametric optimization method for deriving FDG population-based input function (PBIF), independent of acquisition and injection protocols.. This study included ten patients undergoing FDG PET scans using a standard axial field of view scanner. Image-derived input functions (IDIF) were extracted from the descending aorta, normalized, and utilized as input for PBIF modelling. Bayesian hyperparameter optimization was employed to estimate global optima for ten parameters that describe the input function through independent runs of up to 600 iterations each. The injection profile was integrated as a double rectangular profile, representing both the tracer injection and the saline flush tracer residual.. The Bayesian optimization successfully modelled patient-specific IDIFs (R = 0.97). The algorithm estimated injection and flush durations in agreement with recorded values. Parameter distributions showed low variability, with median amplitude and time constant values varying by around 15%. The glucose-affine molecule dynamics were characterized by distinct time constants of 6 s, 4 min, and 70 min. Analytical and numerical comparisons of parametric imaging from IDIF and PBIF show that Patlak analysis is unaffected by the injection characteristics.. The study highlights the benefits of Bayesian optimization for modelling PBIF without prior knowledge of injection characteristics. These findings support the existence of unified FDG PBIF, facilitating the utilization of parametric imaging across PET centres. Although the present study is based on a limited, single-centre cohort, this methodological development is intended as a foundational study to further multi-centre validation on larger population.
动态正电子发射断层扫描(PET)的参数成像在肿瘤诊断和治疗反应评估方面受到了关注。然而,缺乏用于生成动力学建模参考曲线的标准化方法导致描述符不一致,这增加了参数成像可靠性的不确定性。本研究旨在通过提出一种超参数优化方法来解决这一挑战,该方法可独立于采集和注射方案推导基于FDG群体的输入函数(PBIF)。本研究纳入了10名使用标准轴向视野扫描仪进行FDG PET扫描的患者。从降主动脉提取图像衍生输入函数(IDIF),进行归一化,并用作PBIF建模的输入。采用贝叶斯超参数优化来估计十个参数的全局最优值,这些参数通过每次最多600次独立运行来描述输入函数。注射曲线被整合为双矩形曲线,代表示踪剂注射和盐水冲洗示踪剂残留。贝叶斯优化成功地对患者特异性IDIF进行了建模(R = 0.97)。该算法估计的注射和冲洗持续时间与记录值一致。参数分布显示出低变异性,中值幅度和时间常数的值变化约15%。葡萄糖亲和分子动力学的特征是具有6秒、4分钟和70分钟的不同时间常数。对来自IDIF和PBIF的参数成像进行的分析和数值比较表明,Patlak分析不受注射特征的影响。该研究强调了贝叶斯优化在无需注射特征先验知识的情况下对PBIF建模的好处。这些发现支持统一的FDG PBIF的存在,便于在各个PET中心使用参数成像。尽管本研究基于有限的单中心队列,但这种方法学发展旨在作为一项基础研究,以进一步在更大人群上进行多中心验证。