Suppr超能文献

GTFKAN:一种基于图变换器和傅里叶-柯尔莫哥洛夫-阿诺德网络的新型微生物-药物关联预测模型。

GTFKAN: A Novel Microbe-drug Association Prediction Model Based on Graph Transformer and Fourier Kolmogorov-Arnold Networks.

作者信息

Lai Jiacheng, Zhang Zhen, Zeng Bin, Wang Lei

机构信息

Technology Innovation Center of Changsha, Changsha University, Changsha 410022, China; Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha 410022,China.

Technology Innovation Center of Changsha, Changsha University, Changsha 410022, China; Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha 410022,China.

出版信息

J Mol Biol. 2025 Sep 1;437(17):169201. doi: 10.1016/j.jmb.2025.169201. Epub 2025 May 10.

Abstract

Microbes have been shown to be closely related to human health. In recent years, lots of computational methods for predicting microbial-drug association have been proposed. In this manuscript, we introduced a novel predictive model, called GTFKAN, to identify potential microbe-drug associations by combining Graph Transformation Networks (GTN) with Fourier Kolmogorov-Arnold Networks (FKAN). In GTFKAN, we would first compute the Gaussian kernel and functional similarity of microbes and drugs respectively, and then adopt random walk and restart (RWR) methods to enhance these similar features to construct a new microbe-drug heterogeneous network HN. At the same time, we would further calculate the cosine similarity of microbes and diseases to construct another microbe-drug heterogeneous network LDIM. Next, we would input HN into GTN to derive the location and structural features of microorganisms and drugs, and input LDIM into FKAN to extract the hidden higher-order features of microorganisms and drugs, respectively. Finally, we would integrate these two features extracted by GTN and FKAN and feed the integrated features into the MLP classifier to infer potential microbial-drug associations. Moreover, to evaluate the performance of GTFKAN, we compared it with state-of-the-art methods based on well-known public datasets, and the experimental results show that GTFKAN can achieve satisfactory predictive performance. In addition, the results of ablation experiments and case studies also demonstrated the superiority of GTFKAN, which means that GTFKAN may be a useful microbial-drug association prediction tool in the future.

摘要

微生物已被证明与人类健康密切相关。近年来,人们提出了许多预测微生物-药物关联的计算方法。在本论文中,我们引入了一种名为GTFKAN的新型预测模型,通过将图变换网络(GTN)与傅里叶-柯尔莫哥洛夫-阿诺德网络(FKAN)相结合来识别潜在的微生物-药物关联。在GTFKAN中,我们首先分别计算微生物和药物的高斯核和功能相似性,然后采用随机游走和重启(RWR)方法增强这些相似特征,以构建一个新的微生物-药物异质网络HN。同时,我们进一步计算微生物和疾病的余弦相似性,以构建另一个微生物-药物异质网络LDIM。接下来,我们将HN输入到GTN中以推导微生物和药物的位置和结构特征,并将LDIM输入到FKAN中分别提取微生物和药物的隐藏高阶特征。最后,我们将GTN和FKAN提取的这两个特征进行整合,并将整合后的特征输入到MLP分类器中以推断潜在的微生物-药物关联。此外,为了评估GTFKAN的性能,我们基于著名的公共数据集将其与现有方法进行了比较,实验结果表明GTFKAN能够实现令人满意的预测性能。此外,消融实验和案例研究的结果也证明了GTFKAN的优越性,这意味着GTFKAN未来可能是一种有用的微生物-药物关联预测工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验