Mostafa Dina, Shehata Nabila, Alqahtani Mashael D, Bin Jumah May N, Alotaibi Nahaa M, Alenazi Noof A, Rudayni Hassan A, Allam Ahmed A, Al Zoubi Wail, Abukhadra Mostafa R
Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, Egypt.
Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, 62511, Egypt.
Sci Rep. 2025 May 12;15(1):16429. doi: 10.1038/s41598-025-94802-8.
This study presents a facile, cost-effective hydrothermal transformation of natural lateritic iron ore into hematite nanorods, offering significant economic and technical benefits for the remediation of toxic arsenic ions. Lateritic iron ore was subjected to alkaline modification for different durations (12 h (HM12), 24 h (HM24), 36 h (HM36), and 48 h (HM48)), leading to morphological evolution into nanorod structures (2D) with variations in surface area, crystallinity, and adsorption efficacy for arsenate (As(V)) ions. Comprehensive characterization confirmed significant structural and physicochemical modifications. X-ray diffraction (XRD) analysis revealed a shift in peak positions and intensity reduction, indicative of lattice strain and increased surface defects. Fourier-transform infrared spectroscopy (FT-IR) confirmed modifications in the Fe-O coordination, and Brunauer-Emmett-Teller (BET) surface area analysis demonstrated a notable increase in surface area, with HM36 exhibiting the highest value (154.7 m/g). Adsorption experiments indicated that HM36 achieved the highest As(V) removal capacity (151.4 mg/g), followed by HM48 (138.2 mg/g), HM24 (125.4 mg/g), and HM12 (113.8 mg/g). Advanced equilibrium modeling revealed steric and energetic parameters governing the adsorption mechanism, with HM36 exhibiting the highest density of active sites (Nm = 67.9 mg/g). Each active site accommodated up to three As(V) ions, emphasizing the significance of multi-ionic interactions and vertical stacking at the adsorption interface. The adsorption energy, evaluated using both classic models (< 4 kJ/mol) and advanced statistical physics models (< 9 kJ/mol), confirmed a predominantly physical and exothermic adsorption mechanism. Thermodynamic evaluations further supported the spontaneous and favorable nature of As(V) adsorption across all modified hematite derivatives. The ease of synthesis, low-cost natural precursor, improved adsorption efficiency, and recyclability highlight the potential application of these hematite nanorods in real-world wastewater remediation. The findings suggest that HM36 is a highly efficient and scalable adsorbent for arsenic removal, offering sustainable solutions for industrial and agricultural wastewater treatment.
本研究提出了一种简便、经济高效的水热法,可将天然红土铁矿石转化为赤铁矿纳米棒,为有毒砷离子的修复提供了显著的经济和技术效益。对红土铁矿石进行不同时长(12小时(HM12)、24小时(HM24)、36小时(HM36)和48小时(HM48))的碱性改性,导致其形态演变为纳米棒结构(二维),同时比表面积、结晶度以及对砷酸根(As(V))离子的吸附效能也发生了变化。综合表征证实了显著的结构和物理化学改性。X射线衍射(XRD)分析显示峰位发生偏移且强度降低,表明存在晶格应变和表面缺陷增加。傅里叶变换红外光谱(FT-IR)证实了Fe-O配位的改性,布鲁诺尔-埃米特-泰勒(BET)比表面积分析表明比表面积显著增加,其中HM36的值最高(154.7 m²/g)。吸附实验表明,HM36的As(V)去除能力最高(151.4 mg/g),其次是HM48(138.2 mg/g)、HM24(125.4 mg/g)和HM12(113.8 mg/g)。先进的平衡模型揭示了控制吸附机制的空间和能量参数,HM36表现出最高的活性位点密度(Nm = 67.9 mg/g)。每个活性位点最多容纳三个As(V)离子,强调了吸附界面处多离子相互作用和垂直堆积的重要性。使用经典模型(< 4 kJ/mol)和先进的统计物理模型(< 9 kJ/mol)评估的吸附能证实了主要为物理和放热的吸附机制。热力学评估进一步支持了所有改性赤铁矿衍生物对As(V)吸附的自发性和有利性。合成简便、天然前驱体成本低、吸附效率提高以及可回收性突出了这些赤铁矿纳米棒在实际废水修复中的潜在应用。研究结果表明,HM36是一种高效且可扩展的砷去除吸附剂,为工业和农业废水处理提供了可持续的解决方案。