Suppr超能文献

使用基于深度学习的方法发现新型GluN1/GluN3A N-甲基-D-天冬氨酸受体抑制剂。

Discovery of novel GluN1/GluN3A NMDA receptor inhibitors using a deep learning-based method.

作者信息

Wang Shi-Hang, Zeng Yue, Yang Hao, Tian Si-Yuan, Zhou Yong-Qi, Wang Lin, Chen Xue-Qin, Wang Hai-Ying, Gao Zhao-Bing, Bai Fang

机构信息

Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.

School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.

出版信息

Acta Pharmacol Sin. 2025 May 12. doi: 10.1038/s41401-025-01571-1.

Abstract

Ligand-based drug discovery methods typically utilize pharmacophore similarities among molecules to screen for potential active compounds. Among these, scaffold hopping is a widely used ligand-based lead identification strategy that facilitates clinical candidate discovery by seeking inhibitors with similar biological activity yet distinct scaffolds. In this study, we employed GeminiMol, a deep learning-based molecular representation framework that incorporates bioactive conformational space information. This approach enables ligand-based virtual screening by referencing known active compounds to identify potential hits with similar structural and bioactive conformational features. Using GeminiMol-based ligand screening method, we discovered a potent GluN1/GluN3A inhibitor, GM-10, from an 18-million-compound library. Notably, GM-10 features a completely different scaffold compared to known inhibitors. Subsequent validation using whole-cell patch-clamp recording confirmed its activity, with an IC of 0.98 ± 0.13 μM for GluN1/GluN3A. Further optimization is required to enhance its selectivity, as it exhibited IC values of 3.89 ± 0.79 μM for GluN1/GluN2A and 1.03 ± 0.21 μM for GluN1/GluN3B. This work highlights the potential of AI-driven molecular representation technologies to facilitate scaffold hopping and enhance similarity-based virtual screening for drug discovery.

摘要

基于配体的药物发现方法通常利用分子间的药效团相似性来筛选潜在的活性化合物。其中,骨架跃迁是一种广泛应用的基于配体的先导物识别策略,通过寻找具有相似生物活性但骨架不同的抑制剂来促进临床候选药物的发现。在本研究中,我们采用了GeminiMol,这是一个基于深度学习的分子表示框架,它整合了生物活性构象空间信息。这种方法通过参考已知的活性化合物来实现基于配体的虚拟筛选,以识别具有相似结构和生物活性构象特征的潜在命中物。使用基于GeminiMol的配体筛选方法,我们从一个包含1800万个化合物的库中发现了一种有效的GluN1/GluN3A抑制剂GM-10。值得注意的是,与已知抑制剂相比,GM-10具有完全不同的骨架。随后使用全细胞膜片钳记录进行的验证证实了其活性,GluN1/GluN3A的IC50为0.98±0.13μM。由于它对GluN1/GluN2A的IC50值为3.89±0.79μM,对GluN1/GluN3B的IC50值为1.03±0.21μM,因此需要进一步优化以提高其选择性。这项工作突出了人工智能驱动的分子表示技术在促进骨架跃迁和增强基于相似性的虚拟筛选以用于药物发现方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验