Pant Bishnu D, Ahuja Akash, Roychowdhury Sanjoy, Shrestha Deepmala, Cross Emily, Wang Yuxin, Dwyer Christian, Paxitzis Alexandra, Jeng Margaret, Dudekonda Sudhir, Scheraga Rachel, Vachharajani Vidula
Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States.
Pulmonary and Critical Care Medicine, Integrated Hospital care Institute, Cleveland Clinic, Cleveland, OH, United States.
J Immunol. 2025 Jul 1;214(7):1754-1772. doi: 10.1093/jimmun/vkaf078.
Alcohol use disorder increases sepsis mortality. Acute ethanol exposure impairs pathogen clearance in the macrophages via dampened glycolysis and phagocytosis, exaggerates oxidative stress, and regulates the function of the hypoxia-regulating factor 1α (HIF-1α), a master regulator of glycolysis. Decreased expression of the platelet isoform of phosphofructokinase (PFKP), a key glycolytic enzyme, in ethanol-exposed macrophages, is reported. However, transcriptional regulation of PFKP with ethanol exposure is unclear. We hypothesized that acute ethanol exposure-induced oxidative stress dampens macrophage phagocytosis and glycolysis via the HIF-1α-PFKP axis. In ethanol-exposed mouse bone marrow-derived macrophages with lipopolysaccharide stimulation, we studied (i) reactive oxygen species (ROS), phagocytosis, glycolysis, PFKP, and HIF-1α expressions ± ethanol exposure; (ii) the role of HIF-1α in transcriptionally controlling PFKP messenger RNA by chromatin immunoprecipitation-quantitative polymerase chain reaction technique; and (iii) the effect of mitoquinol (MitoQ), a mitochondria-specific antioxidant, on HIF-1α function, glycolysis, phagocytosis, and pathogen clearance in ethanol-exposed macrophages. Last, we examined the effect of MitoQ on 7-d survival in alcohol vs. vehicle-drinking mice with cecal slurry-induced sepsis. In ethanol-exposed and lipopolysaccharide-stimulated macrophages, we found that (i) excessive total and mitochondrial ROS production and dampened phagocytosis, glycolysis, and PFKP expression; (ii) dysfunctional HIF-1α downregulates PFKP transcription; (iii) MitoQ restrains ROS production, restores HIF-1α function, and improves glycolysis and phagocytosis via preserved PFKP messenger RNA and protein expression; and (iv) MitoQ treatment improves survival and pathogen clearance in ethanol with sepsis mice. In conclusion, we found that the HIF-1α-PFKP axis regulates glycolysis and phagocytosis in ethanol-exposed macrophages and is a potential therapeutic target in ethanol with sepsis.
酒精使用障碍会增加脓毒症死亡率。急性乙醇暴露通过抑制糖酵解和吞噬作用,损害巨噬细胞中的病原体清除能力,加剧氧化应激,并调节缺氧调节因子1α(HIF-1α)的功能,HIF-1α是糖酵解的主要调节因子。据报道,在乙醇暴露的巨噬细胞中,关键糖酵解酶磷酸果糖激酶(PFKP)的血小板亚型表达降低。然而,乙醇暴露对PFKP的转录调控尚不清楚。我们推测,急性乙醇暴露诱导的氧化应激通过HIF-1α-PFKP轴抑制巨噬细胞的吞噬作用和糖酵解。在乙醇暴露且经脂多糖刺激的小鼠骨髓来源巨噬细胞中,我们研究了:(i)活性氧(ROS)、吞噬作用、糖酵解、PFKP和HIF-1α的表达(±乙醇暴露);(ii)通过染色质免疫沉淀-定量聚合酶链反应技术研究HIF-1α在转录水平控制PFKP信使核糖核酸中的作用;(iii)线粒体特异性抗氧化剂米托醌(MitoQ)对乙醇暴露巨噬细胞中HIF-1α功能、糖酵解、吞噬作用和病原体清除的影响。最后,我们研究了MitoQ对用盲肠灌洗液诱导脓毒症的饮酒小鼠与对照饮水小鼠7天生存率的影响。在乙醇暴露且经脂多糖刺激的巨噬细胞中,我们发现:(i)总ROS和线粒体ROS产生过多,吞噬作用、糖酵解和PFKP表达受到抑制;(ii)功能失调的HIF-1α下调PFKP转录;(iii)MitoQ抑制ROS产生,恢复HIF-1α功能,并通过保留PFKP信使核糖核酸和蛋白质表达改善糖酵解和吞噬作用;(iv)MitoQ治疗可提高乙醇诱导脓毒症小鼠的生存率并改善病原体清除。总之,我们发现HIF-1α-PFKP轴调节乙醇暴露巨噬细胞中的糖酵解和吞噬作用,并且是乙醇诱导脓毒症的潜在治疗靶点。